Aluminiumlegierungen

Knetlegierungen

DIN 1725

Aluminium alloys; wrought alloys

Alliages d'aluminium; alliages de corroyage

Ersatz für Ausgabe 12.76

1 Anwendungsbereich

Diese Norm gilt für die Zusammensetzung der Aluminium-Knetlegierungen in Halbzeug. Sie gilt ebenfalls für die Zusammensetzung der Legierungen in Gußformaten (Walz-, Preß- und Drahtbarren), aus denen Halbzeug hergestellt wird.

Diese Norm gilt nicht für:

- Schweißzusatzwerkstoffe nach DIN 1732 Teil 1
- Hartlote nach DIN 8513 Teil 4
- Weichlote nach DIN 1707.

2 Bezeichnung

Zum Bezeichnen der Aluminium-Knetlegierungen nach dieser Norm sind die Werkstoff-Kurzzeichen und Werkstoff-Nummern der Tabelle 1 zu verwenden.

Beispiel:

Bezeichnung einer Aluminium-Knetlegierung mit dem Werkstoff-Kurzzeichen AlMgSi0,5 und der Werkstoff-Nummer 2.3206:

Legierung DIN 1725 — AlMgSi0,5 oder Legierung DIN 1725 — 2.3206

- 3 Zusammensetzung (siehe Tabelle 1)
- 4 Halbzeugarten (siehe Tabelle 2)

5 Eigenschaften

Die Tabelle 3 gibt Hinweise auf besondere Eigenschaften. Die aufgeführten Beispiele erheben keinen Anspruch auf Allgemeingültigkeit und Vollständigkeit.

Beispiele einer Legierungsauswahl für Anwendungsgebiete sind im Beiblatt 1 zu DIN 1725 Teil 1 angegeben.

6 Anodisierbarkeit

Alle in dieser Norm aufgeführten Legierungen lassen sich zum Korrosionsschutz, zur elektrischen Isolation, zum Verbessern der Abriebfestigkeit, zum Schaffen eines Haftgrundes für Beschichtungen usw. anodisch oxidieren.

Wenn für solche Schichten keine Ansprüche an ein dekoratives Aussehen gestellt werden, genügt dafür die Verwendung von Halbzeug in "Normalqualität".

Wird jedoch von anodisch oxidiertem Halbzeug ein dekoratives Aussehen verlangt, so sind die Legierungen der Tabelle 1 dafür geeignet, die in der Spalte "Eloxalqualität" der Tabelle 3 angekreuzt sind. In diesem Fall ist das Halbzeug ausdrücklich in "Eloxalqualität" (abgekürzt: EQ) zu bestellen, siehe DIN 17 611.

7 Prüfung der Zusammensetzung

Das Analysenverfahren bleibt dem Hersteller überlassen. In Zweifelsfällen ist die Analyse nach den neuesten Verfahren durchzuführen, die in "Analyse der Metalle" des Chemikerausschusses der Gesellschaft Deutscher Metallhütten- und Bergleute e. V. angegeben sind, und zwar entweder in Band I "Schiedsanalysen" oder im "Ergänzungsband zu den Bänden I Schiedsanalysen • II Betriebsanalysen"; für die Probenahme gilt Band III "Probenahme".

Zum Vergleich mit den Grenzwerten dieser Norm ist jedes Meßergebnis entsprechend der Rundungsregel nach DIN 1333 Teil 2 auf dieselbe Genauigkeit wie die des Grenzwertes zu runden.

Fortsetzung Seite 2 bis 8

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e. V.

Tabelle 1. Zusamm	Zusammensetzung														
Werkstoff	÷			7	Zusammensetzung 1), Massenanteile in %	setzung	ı), Massei	nanteile i	% 	•	Bei	andere Beimengungen	leu	Dichte kg/dm ³	Internationale Register-
Z istanta	N	ij.	П ел	2	Z	Σ	_ ბ	Zu	ï		einzeln	zu- sammen	ins- gesamt	N	Nummer 3)
AIRM90,5	3.3309	0,01	800'0			0,35 bis 0,6		10,0	800'0	Fe+Ti 0,008	0,003	ı	0,020	2,70	ı
AIRM91	3.3319	10,0	800'0			0,8 bis 1,1		0,01	800'0	Fe+Ti 0,008	0,003	ı	0,020	2,69	ļ
AL99,9Mg0,5	3.3308	90'0	0,04		0,03	0,35 bis 0,6		0,04	0,010		0,01	ı	0,10	2,70	I
A199,9Mg1	3.3318	90'0	0,04		0,03	0,8 bis 1,1		0,04	0,010		0,01		0,10	2,69	I
A199,85Mg0,5	3.3307	80'0	80'0		0,03	0,30 bis 0,6		0,05	0,020		0,02	1	0,15	2,70	ı
A199,85Mg1	3.3317	80,0	80'0		60,0	0,7 bis 1,1		90'0	0,020		0,02	I	0,15	2,69	1
A199,9MgSi	3.3208	0,35 bis 0,7	0,04	0,05 bis 0,20	0,03	0,35 bis 0,7		0,04	0,010		0,01	ı	0,10	2,70	•
A199,85MgSi	3.2307	0,35 bis 0,7	80'0	0,05 bis 0,20	60,0	0,35 bis 0,7		0,05	0,020		0,02	ı	0,15	2,70	1
Al99,8ZnMg	3.4337	0,10	0,10	0,20	90'0	0,7 bis 1,2	0,10	3,8 bis 4,6	0,020	Zr 0,15 Fe+Si+Ti+Mn 0,20	0,02	ı	ı	2,76	1
ALFeSi	3.0915	0,40 bis 0,8	0,50 bis 1,0	0,10	0,10			0,10	90'0		90'0	0,25	ı	2,71	8011 A
AUMn0,6	3.0506	0,30	0,45	0,10	0,40 bis 0,8	0,10		0,10			90'0	0,15	1	2,71	3207
AlMn1	3.0515	0,50	0,7	0,10	0,9 bis 1,5	06,0	0,10	0,20	0,102)		0,05	0,15	l	2,73	3103
1) bis 3) siehe Seite 5	eite 5														

接

Tabelle 1. (Fortsetzung)	(Bu											- - -		
Werkstoff-					Zusammensetzung 1), Massenanteile in %	setzung	1), Masse	nanteile i	%		andere Beimengungen	ere gungen	Dichte kg/dm ³	Internationale Register-
Kirry	Nummer	ī	п 9	3	Z.	M	 ბ	Zn	ï		einzeln	zu- sammen	u	Nummer 3)
AUMnCu	3.0517	9,0	7,0	0,05 bis 0,20	1,0 bis 1,5			0,10			0,05	0,15	2,73	3003
AUMnO,5Mg0,5	3.0505	9,0	7'0	06,0	0,30 bis 0,8	0,20 bis 0,8	0,20	0,40	0,10		90'0	0,15	2,71	3105
AUMn1Mg0,5	3.0525	9′0	7'0	06,0	1,0 bis 1,5	0,20 bis 0,6	0,10	0,25	0,10		90'0	0,15	2,72	3005
AUMn1Mg1	3.0526	06,0	7'0	0,25	1,0 bis 1,5	0,8 bis 1,3		0,25			0,05	0,15	2,72	3004
AlMg1	3.3315	06,0	0,45	90'0	0,15	0,7 bis 1,1	0,10	0,20			0,05	0,15	2,69	5005 A
AlWg1,5	3.3316	0,40	0,45	0,05	0,15	1,1 bis 1,7	0,10	0,20			0,05	0,15	2,69	5050 B
AUMg1,8	3.3326	0,30	0,45	0,05	0,25	1,4 bis 2,1	0,30	0,20	0,10		90'0	0,15	2,68	5051 A
AW92,5	3.3523	0,25	0,40	0,10	0,10	2,2 bis 2,8	0,15 bis 0,35	0,10			90'0	0,15	2,68	5052
Al Mg 3	3.3535	0,40	0,40	0,10	0,504)	2,6 bis 3,6	0,304)	0,20	0,15	Mn+Cr 0,10 bis 0,64)	90'0	0,15	2,66	5754
AW94,5	3.3345	0,20	0,35	0,15	0,15	4,0 bis 5,0	0,15	0,25	0,10		90'0	0,15	2,65	5082
AUM5	3.3555	0,40	0,50	0,10	0,10 bis 0,6	4,5 bis 5,6	0,20	0,20	0,20	Mn+Cr0,10bis0,6	0,05	0,15	2,64	5056 A
AlMg2Mn0,3	3.3525	0,40	0,50	0,15	0,10 bis 0,50	1,7 bis 2,4	0,15	0,15	0,15		0,05	0,15	2,68	5251
1), 3) und 4) siehe Seite 5	Seite 5													

संस्थ

Tabelle 1. (Fortsetzung)

Internationale Register-Nummer 3) ⋖ 8 6005 5182 909 6082 6101 6061 1 5454 Dichte kg/dm³ 2,70 2,70 2,70 2,70 2,70 2,66 2,66 2,64 2,69 2,68 2,71 ₩ andere Beimengungen zu-einzeln sammen 0,15 0,10 0,15 0,05 0,05 0,03 0,03 0,05 0,05 0,05 0,05 0,05 0,05 Mn+Cr0,12bis0,50 Cr+Mn+Ti+V 0,03 Pb 0,40 bis 2,0 Bi 0,7 0,10 0,20 0,10 0,20 Zusammensetzung 1), Massenanteile in % 0,20 0,20 0,25 0,30 0,25 0,25 0,25 0,25 Zu 0,04 bis 0,35 0,30 0,05 bis 0,20 0,05 bis 0,05 0,30 0,25 0,05 bis 0,25 ပံ 0,35 0,6 0,35 0,35 0,6 0,6 0,40 0,7 4,0 bis 4,9 4,0 bis 5,0 0,6 bis 1,2 0,40 bis 1,0 0,40 bis 1,0 0,50 bis 1,0 0,20 bis 0,40 bis 1,0 0,20 bis 0,50 0,05 0,50 0,05 0,02 0,30 చె 0,50 0,10 bis 0,30 0,10 0,30 0,30 0,10 0,30 0,30 0,40 0,35 0,50 0,50 0,50 F. 0,50 bis 0,6 0,0 0,30 0,50 0,50 0,50 0,7 0,7 0,40 bis 0,8 0,6 bis 0,40 0,40 0,25 0,40 0,20 ŝ 3.0615 3.2315 3.3545 3.3549 3.2305 3.3206 3.3211 3.3547 3.3537 3.3207 3.3527 1) und 3) siehe Seite 5 Werkstoff-Kurzzeichen AUMg2Mn0,8 E-AUMBS10,5 AlMg2,7Mn AUMg4,5Mn AUMg1SiCu AWg4Mn **AlMg5Mn** AUMgS 10,7 **AUM**gSiPb E-AUMpSi AlMgSi1

issi

5
5
2
क्
ortsetzu
≒
щ
Ē
Ē,
1. (F
1. (F
elle 1. (F.
belle 1. (F
elle 1. (F.
belle 1. (F

	10													
Werkstoff-	 !			N	Zusammei	nsetzung	Zusammensetzung 1), Massenanteile in %	nanteile i	% %		andere Beimengungen	andere nengungen	Dichte kg/dm ³	Internationale Register-
												żū		Nummer 3)
Kurzzeichen	Nummer	Si	Fe	n)	Mn	Mg	ပ်	Zu	Ţi		einzeln	einzeln sammen	æ	
AlCuBiPb	3.1655	0,40	7'0	5,0 bis 6,0				0,30		Bi 0,20 bis 0,6 Pb 0,20 bis 0,6	0,05	0,15	2,82	2011
AtCuMgPb	3.1645	8′0	8′0	3,3 bis 4,6	0,50 bis 1,0	0,40 bis 1,8	0,10	8′0	0,20	Ni 0,20, Bi 0,20 Pb 0,8 bis 1,5 Sn 0,20	0,10	0,30	2,85	2007
AlCu2,5Mg0,5	3.1305	8′0	<i>L</i> ′0	2,2 bis 3,0	0,20	0,20 bis 0,50	0,10	0,25			90′0	0,15	2,74	2117
AlCuMg1	3.1325	0,20 bis 0,8	7'0	3,5 bis 4,5	0,40 bis 1,0	0,40 bis 1,0	0,10	0,25		Ti+Zr 0,25	90'0	0,15	2,80	2017 A
AlCuMg2	3.1355	0,50	09'0	3,8 bis 4,9	0,30 bis 0,9	1,2 bis 1,8	0,10	0,25	0,15	Ti+Zr 0,20	0,05	0,15	1,7	2024
AlCuSiMn	3.1255	0,50 bis 1,2	7'0	3,9 bis 5,0	0,40 bis 1,2	0,20 bis 0,8	0,10	0,25	0,15	Ti+Zr 0,20	90'0	0,15	2,80	2014
AlZn1 6)	3.4415	Si+Fe	7'0	0,10	0,10	01,0		0,8 bis 1,3			0,05	0,15	2,72	7072
AlZn4,5Mg1	3.4335	0,35	0,40	0,20	0,05 bis 0,50	1,0 bis 1,4	0,10 bis 0,35	4,0 bis 5,0		Ti+Zr 0,08 bis 0,25 Zr 0,08 bis 0,20	0,05	0,15	2,77	7020
AlZnMgCu0,5	3.4345	0,50	09'0	0,50 bis 1,0	0,10 bis 0,40	2,6 bis 3,7	0,10 bis 0,30	4,3 bis 5,2		Ti+Zr 0,20	0,05	0,15	2,78	7022
ALZnMgCu1,5	3.4365	0,40	0,50	1,2 bis 2,0	0,30	2,1 bis 2,9	0,18 bis 0,28	5,1 bis 6,1	0,20	Ti+Zr 0,25	0,05	0,15	2,80	7075
1) Einzelwerte sind max . Anteile für die Beimengungen	max - Anteile	fir die B	eimenaur	naen.										

1) Einzelwerte sind max.-Anteile für die Beimengungen.

Kann ganz oder teilweise durch Zr ersetzt werden.
 Die Internationale Register-Nummer ist für die DIN-Werkstoffe angegeben, deren Zusammensetzung im internationalen Verzeichnis für Aluminium-Knetwerkstoffe "Registration Record of International Alloy Designations and Chemical Composition Limits for Wrought Aluminium and Wrought Aluminium Alloys" aufgeführt ist, herausgegeben von der Aluminium Association, Washington.

4) Von den beiden Legierungselementen Mn und Cr muß wenigstens einer, und zwar Mn mit 0,2 % oder Cr mit 0,1 % vorhanden sein. Für Eloxalqualität entfällt die untere Grenze 0,10 %.

5) Nur als Plattierwerkstoff angewendet.

Tabelle 2. Halbzeugarten
Die handelsüblichen Halbzeugarten aus Aluminium sind durch ein "X" gekennzeichnet

Werkstoff-	Bänder ur mit D	icken	Rohre	Stangen	Drähte	Strangpreß- profile	Gesenk- schmiede-	Freiform- schmiede-
Kurzzeichen	≤0,35 mm DIN 1788	>0,35 mm DIN 1745 T1 und T2	DIN 1746 T1 und T2	DIN 1747 T1 und T2	DIN 1790 T1 und T2	DIN 1748 T1 und T2	stücke DIN 1749 T1 und T2	stücke DIN 17 600 T1 und T2
AIRMg0,5		×					:	
ALRMg1 AL99,9Mg0,5		×			×	×		
AL99,9Mg1		x	j		x	×		
AL99,9MgSi						X	X	
AL99,85Mg0,5		×	×		X	X		
AL99,85Mg1		X	X		X	×	×	
AL99,85MgSi AL99,8ZnMg						×	^	
AlFeSi	X 1)	×						
*	DIN59606							
AUMn1	V 41	×	X	X	X	X		
AUMnCu	X 1)	<u> </u>						
\UMn0,5Mg0,5 AUMn1Mg0,5	X 1) X 1)	×						
AUMn1Mg1	× 1)	×						
AUMg1	×	×	×	Х	X	Х		
AUMg1,5		X	.,			×		
AUMg1,8 AUMg2,5	× 1)	×	×		X	^		
AUMg3	×	×	X	X	X	X	×	×
AlMg4,5	× 1)							
AUMg5			X	X	X	X	×	
AUMg2Mn0,3	DIN59606		X	×	X	×		
AUMg2Mn0,8 AUMg2,7Mn	1	×	^	^		^		
AUMg4Mn		x				ļ		
AUMg4,5Mn		×	X	X		X	×	×
AUMg5Mn	DIN 59 606	ļ	<u> </u>					ļ
E-AUMgSi					DIN 48 200 Teil 6			
E-AUMgSi0,5			DIN 40 501	DIN 40 501		DIN 40 501		
			Teil 2	Teil 3		Teil 3 X 2)	×	
AlMgSi0,5 AlMgSi0,7			X	×	×	X 2)	^	
AlMgSi1		×	X	×	×	X	X	×
AlMg1SiCu		×						ļ
AUMgSiPb			×	×				
AlCuBiPb			X	X				
AlCuMgPb	-	-	X	 ^				
AlCu2,5Mg0,5 AlCuMg1		×	×	×	X	×	×	×
AlCuMg2		x̂	x	x	×	×	X	X
AlCuSiMn		×	X	X		X	X	X
AlZn4,5Mg1		×	Х	×	X	X	×	X
AlZnMgCu0,5		X	×	×	×	X	× ×	×
AlZnMgCu1,5	1		^_	<u> </u>				

¹⁾ Auch für Dosen und Verschlüsse nach DIN 59 606.

£

1,454

²⁾ Auch für Präzisionsprofile nach DIN 17 615 Teil 1, Teil 2 (z. Z. Entwurf) und Teil 3.

Tabelle 3. Besondere Eigenschaften (siehe Abschnitt 5)

Legierungen, die in dieser Tabelle mit "X" gekennzeichnet sind, werden bevorzugt wegen dieser Eigenschaft angewendet. Diese Kennzeichnung schließt jedoch nicht aus,

- daß zwischen den gekennzeichneten Legierungen graduelle Unterschiede bestehen, und
- daß auch nicht gekennzeichnete Legierungen derartige Eigenschaften besitzen, ohne jedoch dafür bevorzugt angewendet

Werkstoff- Kurzzeichen	aushärtbar	glänzbar	Eloxalqualität	meerwasser- beständig	Für statisch beanspruchte Konstruktion	gut schweißbar	Für Bearbeitung auf Automaten
ALR Mg0,5 ALR Mg1 AL99,9 Mg0,5 AL99,9 Mg1 AL99,9 MgSi	X	X X X X					
AL99,85Mg0,5 AL99,85Mg1 AL99,85MgSi AL99,8ZnMg	×	× × ×		·			
AlFeSi AlMn0,6 AlMn1 AlMnCu						× ×	
AlMn0,5Mg0,5 AlMn1Mg0,5 AlMn1Mg1				×			
AUMg1,5 AUMg1,8 AUMg2,5			×	X X X	×	X X X	
ALMg3 ALMg4,5 ALMg5			X 1)	×	×	×	×
ALMg2Mn0,3 ALMg2Mn0,8 ALMg2,7Mn ALMg4Mn ALMg4,5Mn ALMg5Mn				X X X X	X X X	X X X	
E-AlMgSi E-AlMgSi0,5 AlMgSi0,5 AlMgSi0,7 AlMgSi1 AlMg1SiCu	X X X X		×	× × ×	X X X	× × ×	
AlMgSiPb AlCuBiPb AlCuMgPb	×××						X X
AlCu2,5Mg0,5 AlCuMg1 AlCuMg2 AlCuSiMn	X X X				X X X		
AlZn4,5Mg1 AlZnMgCu0,5 AlZnMgCu1,5	X X X				X X	×	

Zitierte Normen und andere Unterlagen

Zitier	te Normen und	d andere Unterlagen
DIN		Zahlenangaben; Runden
DIN	1707	Weichlote; Zusammensetzung, Verwendung, Technische Lieferbedingungen
Beibla	tt 1 zu	
DIN	1725 Teil 1	Aluminiumlegierungen; Knetlegierungen, Beispiele für die Anwendung
DIN	1732 Teil 1	Schweißzusatzwerkstoffe für Aluminium; Zusammensetzung, Verwendung und Technische Lieferbedingungen
DIN	1745 Teil 1	Bänder und Bleche aus Aluminium und Aluminium-Knetlegierungen mit Dicken über 0,35 mm; Eigenschaften
DIN	1745 Teil 2	Bänder und Bleche aus Aluminium und Aluminium-Knetlegierungen mit Dicken über 0,35 mm; Technische Lieferbedingungen
DIN	1746 Teil 1	Rohre aus Aluminium und Aluminium-Knetlegierungen; Festigkeitseigenschaften
DIN	1746 Teil 2	Rohre aus Aluminium und Aluminium-Knetlegierungen; Technische Lieferbedingungen
DIN	1747 Teil 1	Stangen aus Aluminium und Aluminium-Knetlegierungen; Eigenschaften
DIN	1747 Teil 2	Stangen aus Aluminium und Aluminium-Knetlegierungen; Technische Lieferbedingungen
DIN	1748 Teil 1	Strangpreßprofile aus Aluminium und Aluminium-Knetlegierungen; Eigenschaften
DIN	1748 Teil 2	Strangpreßprofile aus Aluminium und Aluminium-Knetlegierungen; Technische Lieferbedingungen
DIN	1749 Teil 1	Gesenkschmiedestücke aus Aluminium und Aluminium-Knetlegierungen; Festigkeitseigenschaften
DIN	1749 Teil 2	Gesenkschmiedestücke aus Aluminium (Reinstaluminium, Reinaluminium und Aluminium-Knetlegierungen) Technische Lieferbedingungen
DIN	1788	Bänder und Bleche aus Aluminium und Aluminium-Knetlegierungen mit Dicken von 0,021 bis 0,350 mm; Eigenschaften
N	1790 Teil 1	Drähte aus Aluminium und Aluminium-Knetlegierungen; Eigenschaften
Νاب	1790 Teil 2	Drähte aus Aluminium und Aluminium-Knetlegierungen; Technische Lieferbedingungen
DIN	8513 Teil 4	Hartlote; Aluminiumbasislote; Züsammensetzung, Verwendung, Technische Lieferbedingungen
DIN 1	17 606 Teil 1	Freiformschmiedestücke aus Aluminium und Aluminium-Knetlegierungen; Festigkeitseigenschaften
DIN '	17 606 Teil 2	Freiformschmiedestücke aus Aluminim und Aluminium-Knetlegierungen; Technische Lieferbedingungen
DIN	17 611	Anodisch oxidiertes Halbzeug aus Aluminium und Aluminium-Knetlegierungen mit Schichtdicken von mindestens 10 µm; Technische Lieferbedingungen
DIN	17 615 Teil 1 1)	Präzisionsprofile aus AlMgSi0,5; Technische Lieferbedingungen
DIN	17 615 Teil 2	(z. Z. Entwurf) Präzisionsprofile aus AlMgSi0,5; Konstruktionsgrundlagen
DIN	17 615 Teil 3 1)	Präzisionsprofile aus AlMgSi0,5; Zulässige Abweichungen
DIN	40 501 Teil 2	Aluminium für die Elektrotechnik; Rohre aus Reinaluminium und Aluminium-Knetlegierung, Technische Lieferbedingungen
DIN	40 501 Teil 3	Aluminium für die Elektrotechnik; Profile, Stangen aus Reinaluminium und Aluminium-Knetle- gierung, Technische Lieferbedingungen
DIN	48 200 Teil 6	Drähte für Leitungsseile; Drähte aus E-AlMgSi
DIN	59 606	Bänder und Bleche aus Aluminium und Aluminium-Knetlegierungen für Dosen und Verschlüsse
Anal	vse der Metalle 2)	Band I Schiedsanalysen
	,	Band III Probenahme
		Ergänzungsband zu den Bänden I Schiedsanalysen • II Betriebsanalysen

Frühere Ausgaben

DIN 1712 Teil 4: 12.53, DIN 1725 Teil 4: 10.61; DIN 1713: 09.35, 09.37, DIN 1713 Teil 1: 06.41; DIN 1725: 11.42; DIN 1725 Teil 1: 07.43, 01.45, 01.51, 05.58, 05.61, 02.67, 12.76

Änderungen

Gegenüber der Ausgabe Dezember 1976 wurden folgende Änderungen vorgenommen:

- a) Die Legierungen AlCu2Mg0,5 und AlMgSi0,8 wurden gestrichen.
- b) Folgende Legierungen wurden neu aufgenommen: AlMn0,6, AlMg5Mn, AlMgSi0,7 und AlMg1SiCu.
- c) Bei der Überarbeitung wurden die Legierungen AlCuMgPb, AlMgSiPb und AlMg3 geändert.
- d) Das Kurzzeichen AlMn wurde in AlMn1 geändert.
- e) Der Text wurde redaktionell überarbeitet.

Internationale Patentklassifikation

C 22 C 21/00

2) Zu beziehen durch:

Berlin - Göttingen - Heidelberg; Springer-Verlag

 ΩM :

¹⁾ Im Vorgriff auf eine im Kurzverfahren beabsichtigte Folgeausgabe wurde hierfür bereits der für den Entwurf DIN 17 615 Teil 2 gewählte Haupttitel eingesetzt.

Aluminiumlegierungen

Knetlegierungen Beispiele für die Anwendung Beiblatt 1 zu DIN 1725 Teil 1

Aluminium alloys; wrought alloys; examples for application Alliages d'aluminium; alliages de corroyage; exemples pour l'usage

Dieses Beiblatt enthält Informationen zu DIN 1725 Teil 1, jedoch keine zusätzlichen genormten Festlegungen

Das vorliegende Beiblatt 1 zu DIN 1725 Teil 1 enthält Beispiele für die bevorzugte Anwendung einzelner Aluminium-Knetlegierungen. Die für die Anwendungsgebiete ausgewählten Legierungen erheben keinen Anspruch auf Vollständigkeit

Anwendungsgebiet	Legierung
pparatebau	
Druckbehälter	
nach AD-W6/1	AlMg3, AlMg2Mn0,8, AlMg4,5Mn
nach VdTÜV-Werkstoffblättern	AlMg2,7Mn, AlMgSi1, AlZn4,5Mg1, AlMg2Mn0,8, AlMg3, AlMg4,5Mn, AlMn1, AlMg4
Druckgasbehälter	
Rohrleitungen	AlMn, AlMg3, AlMg2Mn0,8, AlMg4,5Mn, AlMgSi0,5
Wärmeaustauscher	AlMn (auch plattiert), AlMnCu (auch plattiert), AlMgSi0,5, AlMgSi1
auwesen	
Tragkonstruktionen	
nach DIN 4113	AlMg3, AlMg2Mn0,8, AlMg4,5Mn, AlMgSi0,5, AlMgSi1, AlZn4,5Mg1
Dachdeckungen, Fassadenbekleidungen	AlMn, AlMn1Mg0,5, AlMg1, AlMg3, AlMg2Mn0,8
Fenster, Türen	AlMgSi0,5
Rolläden, Rolltore	AlMn1Mg0,5, AlMn1Mg1, AlMgSi0,5, AlMgSi1
ergbau 1)	AlMgSi1, AlZnMgCu0,5

1) Für Verwendung in grubengasführenden Bauten sind Sonderregelungen zu beachten.

Fortsetzung Seite 2

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e. V.

88%

Anwendungsgebiet	Legierung
Elektrotechnik	E-AlMgSi (DIN 48 200 Teil 6) E-AlMgSi0,5 (DIN 40 501 Teil 2 und Teil 3)
Fahrzeugbau (einschließlich Tankwagen)	AlMn, AlMn1Mg0,5, AlMg1, AlMg3, AlMg2Mn0,8, AlMg4,5Mn, AlMgSi0,5, AlMgSi0,8, AlMgSi1, AlZn4,5Mg1
Flugzeugbau	siehe Werkstoff-Handbuch der Deutschen Luftfahrt
Maschinenbau (einschließlich Formenbau)	AlMg3, AlMg4,5Mn, AlMgSi0,5, AlMgSi0,8, AlMgSi1, AlMgSiPb, AlCuBiPb, AlCuMgPb, AlCuMg1, AlCuMg2, AlCuSiMn, AlZn4,5Mg1, AlZnMgCu0,5, AlZnMgCu1,5
Metallwaren (z.B.Baubeschläge, Geschirr, Fließpreßteile, Reflektoren)	Glänzlegierungen AlMn, AlMg1, AlMg3, AlMgSi0,5, AlMgSi0,8, AlMgSi1
Möbel (einschließlich Campingmöbel)	AlMg1, AlMg3, AlMg2Mn0,8, AlMgSi0,5, AlMgSi1
Nahrungsmittelindustrie (einschließlich Geräte)	AlMn, AlMg1, AlMg1,5, AlMg3, AlMg2Mn0,3, AlMg2,7Mn, AlMg4,5Mn, AlMgSi1
Optik	AlMg5, AlMgSiPb, AlCuMgPb
Schiffbau (einschließlich Einrichtungen)	AlMg3, AlMg2Mn0,8, AlMg4,5Mn, AlMgSi0,5, AlMgSi1, AlZn4,5Mg1
Schilder (Straßenverkehr)	AlMg2,5, AlMg2Mn0,3
Schmuckwaren Zierleisten, Zierteile	Glänzlegierungen
Verbindungselemente Schrauben	AlMg3, AlMg5, AlMg4,5Mn, AlMgSi1, AlCuMg1, AlCuMg2, AlZnMgCu0,5, AlZnMgCu1,5
Niete (DIN 59 675)	AlMn, AlMg3, AlMg5, AlMgSi1, AlCu2,5Mg0,5, AlCuMg1, AlCuMg2
Preßklemmen (DIN 3093 Teil 1 bis Teil 3)	AlMg1,8
Verpackung	AlFeSi, AlMnCu, AlMn0,5Mg0,5, AlMn1Mg0,5, AlMn1Mg1, AlMg1, AlMg2,5, AlMg3, AlMg4,5

Aluminiumlegierungen Gußlegierungen

Sandguß Kokillenguß

Druckguß

Feinguß

DIN 1725

Aluminium alloys, casting alloys, sand castings, gravity die castings, pressure die castings, investment castings

Mit DIN 1725 Teil 5/02.86 Ersatz für Ausgabe 09.73

Alliages d'aluminium, alliages de fonderie, moulage en sable, moulage en coquille, moulage sous pression, moulage de précision

Zusammenhang mit der von der International Organization for Standardization (ISO) herausgegebenen Internationalen Norm ISO/DIS 3522 – 1984, siehe Erläuterungen.

1 Anwendungsbereich

In Verbindung mit den allgemeinen Technischen Lieferbedingungen für Gußstücke nach DIN 1690 Teil 1 werden in dieser Norm die Werkstoffeigenschaften und Zusammensetzung von Sand-, Kokillen-, Druck- und Feingußstücken aus den vorzugsweise zu verwendenden Aluminium-Gußlegierungen festgelegt.

Die Legierungszusammensetzung gilt nach Vereinbarung auch für die Hersteller von Gußstücken nach anderen Formoder Gießverfahren, z.B. Schleuderguß.

Die Zusammensetzung von Aluminium-Gußlegierungen in Form von Blockmetallen (Masseln) oder von Flüssigmetallen zur Herstellung von Gußstücken nach dieser Norm sind in DIN 1725 Teil 5 angegeben.

2 Bezeichnung

Aluminium-Gußlegierungen nach dieser Norm sind mit den Werkstoff-Kurzzeichen oder den Werkstoff-Nummern nach den Tabellen 1 bis 4 zu bezeichnen, z.B.:

Bezeichnung einer Aluminium-Gußlegierung für ein Druckgußstück mit dem Werkstoff-Kurzzeichen GD-AlSi9Cu3 und der Werkstoff-Nummer 3.2163.05:

Gußlegierung DIN 1725 – GD-AlSi9Cu3 oder Gußlegierung DIN 1725 – 3.2163.05

3 Zusammensetzung

Siehe Tabellen 1 bis 4.

4 Werkstoffeigenschaften

- **4.1** Die in den Tabellen 1 bis 4 genannten Werte für die Werkstoffeigenschaften sind bei der Abnahmeprüfung einzuhalten, wie in untenstehender Übersicht angegeben. Von der Norm abweichende Sollwerte sind zwischen Besteller und Hersteller bei Bestellung zu vereinbaren.
- **4.2** Zur Übersicht sind folgende weitere Einzelheiten festzuhalten.
- **4.2.1** Beim Druckgießverfahren sind die Festigkeitswerte im Gußstück in besonderer Weise von der Gestalt und den gießtechnischen Gegebenheiten abhängig. Deshalb sind nur Werte für den getrennt gegossenen Probestab angegeben.
- 4.2.2 Die nicht eingeklammerten Werte zeigen die Leistungsfähigkeit der Legierungen und den werkstoff- und gießbedingten Streubereich auf. Der jeweilige Höchstwert dient dem Konstrukteur zur Information und ist für die Abnahmeprüfung nicht bindend.

Bei günstigen gießtechnischen Voraussetzungen und entsprechendem gießtechnischen Aufwand können diese Werte auch im Gußstück oder Teilbereichen davon erreicht werden.

4.3 Angaben über weitere Werkstoffeigenschaften und Hinweise für die Verwendung sowie vergleichende Bewertung weiterer Werkstoffeigenschaften, siehe Tabelle 5.

Weitere mechanische und physikalische Eigenschaften von Aluminium-Gußlegierungen, siehe Beiblatt 1 zu DIN 1725 Teil 2.

Probestück	Gießverfahren	Einzuhaltender Mindestwert bei Abnahmeprüfung	Probestab Querschnitt mm ²	Wanddicke mm
	Sandguß Kokillenguß	Mindestwert des	120	
getrennt gegossen	Feinguß	angegebenen Bereiches	50	nicht festgelegt
	Druckguß		20	
angegossen	Sandguß Kokillenguß	der eingeklammerte	so groß wie möglich, jedoch	bis 20
dem Gußstück entnommen*)	Feinguß	Wert	max. 100	

*) Die in Frage kommenden Gußstückbereiche sind auf der Zeichnung anzugeben.

Fortsetzung Seite 2 bis 14

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e.V.
Normenausschuß Gießereiwesen (GINA) im DIN

5 Gußstückbeschaffenheit

Es gelten die Festlegungen nach DIN 1690 Teil 1.

6 Prüfung

In Ergänzung zu DIN 1690 Teil 1 sind für die Prüfung von Gußstücken nach dieser Norm folgende Einzelheiten zu beachten

Wird der Nachweis der Eigenschaften, z.B. der Zusammensetzung, der Festigkeitswerte, gefordert, so muß er bei Bestellung vereinbart werden. Dabei sind Art der durchzuführenden Prüfung und der Bescheinigung über Materialprüfungen nach DIN 50 049 festzulegen.

6.1 Prüfung der Zusammensetzung

Die Prüfung der in den Tabellen 1 bis 4 aufgeführten Elemente wird in der Regel nach den Analysenvorschriften des Herstellers durchgeführt. In Zweifelsfällen ist die Analyse nach den neuesten Verfahren durchzuführen, die in "Analyse der Metalle" des Chemikerausschusses der Gesellschaft Deutscher Metallhütten- und Bergleute e. V. angegeben sind, und zwar entweder in Band 1 "Schiedsanalysen" oder im "Ergänzungsband zu den Bänden I Schiedsanalysen * II Betriebsanalysen"; für die Probenahme gilt Band III "benahme".

6.2 Prüfung der Festigkeitswerte

6.2.1 Probestücke

Es können folgende Probestücke vereinbart werden:

- a) das getrennt gegossene Probestück¹) aus derselben Schmelze wie das Gußstück,
- b) das angegossene Probestück,
- c) das aus dem Gußstück entnommene Probestück.

In besonderen Fällen kann für Druckguß der getrennt gegossene Probestab nach DIN 50 148 vereinbart werden.

6.2.2 Zugversuch

Der Zugversuch wird nach DIN 50 145 mit dem Proportionalstab nach DIN 50 125 durchgeführt. Der Prüfumfang für den Zugversuch ist zu vereinbaren.

6.2.3 Brinellhärte

Die Härteprüfung nach Brinell wird nach DIN 50 351 mit dem Belastungsgrad 10 durchgeführt, vorzugsweise HB 5/250. Sie ist, je nach Gestalt des Gußstückes vor allem bei unterschiedlichen Wanddicken und entsprechend der Größe und Form des Gußstückes, möglichst an zu vereinbarenden Stellen vorzunehmen. Der Mittelwert von 3 Einzelwerten je Gußstück muß den angegebenen oder vereinbarten Wert erreichen.

6.2.4 In einigen Legierungen (z.B. G-/GK-/GD-AlSi9Cu3, G-/GK-/GD-AlSi6Cu4) laufen nach dem Gießen Ausscheidungs- und Entmischungsvorgänge im Gefüge ab, die eine Erhöhung der Festigkeitswerte und der Härte zur Folge haben. Diese Legierungen sind deshalb erst 8 Kalendertage nach dem Guß auf Festigkeitseigenschaften und Härte zu prüfen.

6.3 Runden von Meßergebnissen

Zum Vergleich mit den Grenzwerten dieser Norm ist jedes Meßergebnis entsprechend der Rundungsregel nach DIN 1333 Teil 2 auf dieselbe Genauigkeit wie die des Grenzwertes zu runden.

Die gerundete Zahl darf die festgelegten Grenzwerte nicht überschreiten.

3331

Siehe hierzu VDG-Merkblätter P 370, P 372, P 375 und P 376

				Werks	Werkstoffeigenschaften	ften		Zusammensetzung Massenanteile in %	setzung	Zugehöriges
Werkston-	Nummer	Gießverfahren und Lieferzustand	0,2- Grenze R _{p 0,2} N/mm ²	Zug- festigkeit R _m N/mm ²	Bruch- dehnung A ₅	Brinell- härte HB 5/250	Dichte kg/dm³ ≈	Legierungs- bestandteile	Zulässige Beimengungen ¹) _{max} .	DIOCKIIIetaii nach DIN 1725 Teil 5
G-AlSi12	3.2581.01	Sandguß Gußzustand	9	150 bis 200 (140)	5 bis 10 (3)	45 bis 60 (45)	2,65	Si 10,5 bis 13,5 Mn 0,001 bis 0,4	Cu 0,05 Fe 0,5 Ma 0.05	GB-AlSi12 3.2521 230 A
G-AlSi12g	3.2581.44	Sandguß geglüht und abgeschreckt	70 bis 100 (70)	150 bis 200 (140)	6 bis 12 (5)	45 bis 60 (45)			Ti 0,15 Zn 0,1 Sonstige:	
GK-AlSi12	3.2581.02	Kokillenguß Gußzustand	80 bis 110 (80)	170 bis 230 (150)	6 bis 12 (3)	50 bis 65 (50)			insgesamt 0,15	
GK-AlSi12g	3.2581.45	Kokillenguß geglüht und abgeschreckt	80 bis 110 (80)	170 bis 230 (160)	6 bis 12 (4)	50 bis 65 (50)				
G-AlSi12(Cu)	3.2583.01	Sandguß Gußzustand	80 bis 100 (80)	150 bis 210 (140)	1 bis 4 (1)	50 bis 65 (50)	2,65	Si 10,5 bis 13,5 Mn 0,1 bis 0,5	Cu 1.0 Fe 0.8 Mo 0.3	GB-AlSi12(Cu) 3.2523 231 A
GK-AlSi12(Cu)	3.2583.02	Kokillenguß Gußzustand	90 bis 120 (90)	180 bis 240 (160)	2 bis 4 (1)	55 bis 75 (55)			Ni 0.2 No 0.2 Pb 0.2	
									Ti 0,15 Zn 0,5 Sonstige: einzeln 0,05	
					·				insgesamt 0,15	
G-ALSi10Mg	3.2381.01	Sandguß Gußzustand	80 bis 110 (70)	160 bis 210 (150)	2 bis 6 (2)	50 bis 60 (50)	2,65	Si 9,0 bis 11,0 Mg 0,20 bis 0,50 Mn 0,001 bis 0,4	Cu 0,05 Fe 0,5 Ti 0,15	GB-AISi10Mg 3.2331 239 A
G-AlSi10Mg wa	3.2381.61	Sandguß warmausgehärtet	180 bis 260 (170)	220 bis 320 (200)	1 bis 4 (1)	80 bis 110 (75)		Al Rest	Zn 0,1 Sonstige: einzeln 0,05	
GK-AlSi10Mg	3.2381.02	Kokillenguß Gußzustand	90 bis 120 (90)	180 bis 240 (180)	2 bis 6 (2)	60 bis 80 (60)			insgesamt 0,15	
GK-AlSi10Mg wa	3.2381.62	Kokillenguß warmausgehärtet	210 bis 280 (190)	240 bis 320 (220)	1 bis 4 (1)	85 bis 115 (80)				
1) Ausgenommer	n Veredelung	Ausgenommen Veredelungs- und/oder Kornfeinungszusätze	ıngszusätze							

Tabelle 1. (Fortsetzung)	(t									
Werkstoff-				Werk	Werkstoffeigenschaften	ıften		Zusammensetzung Massenanteile in %	nsetzung eile in %	Zugehöriges
		Gießverfahren	0,2-	Zng-	Bruch-	Brinell-	Dichte	-	7.11.5	Biockmetall nach
Kurzzeichen	Nummer	Lieferzustand	Grenze R _{0.0.2}	festigkeit R _m	dehnung A_5	harte HB 5/250	kg/dm ³	Legierungs- bestandteile	Zulassige Beimengungen ¹)	DIN 1725 Teil 5
			N/mm ²	N/mm ²	%		a l		тах.	5
				<u> </u>						
G-AlSi10Mg(Cu)	3.2383.01	Sandguß Gußzustand	90 bis 110 (80)	170 bis 230 (150)	1 bis 4 (1)	55 bis 65 (55)	2,65	Si 9,0 bis 11,0 Mg 0,20 bis 0,50	Cu 0,3 Fe 0,6	GB-AISi10Mg(Cu) (Cu)
G-AlSi10Mg(Cu) wa	3.2383.61	Sandguß warmausgehärtet	180 bis 260 (180)	220 bis 320 (200)	1 bis 3 (0,5)	80 bis 110 (75)		Al Rest	Ti 0,15 Zn 0,3	233
GK-AlSi10Mg(Cu)	3.2383.02	Kokillenguß Gußzustand	100 bis 140 (100)	200 bis 260 (180)	1 bis 3 (0,5)	65 bis 85 (60)			einzeln 0,05 insgesamt 0,15	
GK-AlSi10Mg(Cu) wa	3.2383.62	Kokillenguß warmausgehärtet	210 bis 280 (190)	240 bis 320 (220)	1 bis 3 (0,5)	85 bis 115 (80)				
				And the second s	and the second s					The state of the s
G-AlSi9Cu3	3.2163.01	Sandguß Gußzustand	100 bis 150 (100)	160 bis 200 (140)	1 bis 3 (0,5)	65 bis 90 (60)	2,75	Si 8,0 bis 11,0 Cu 2,0 bis 3,5 Mn 0 1 bis 0,5	Fe 0,8 Ni 0,3 Ph 0,2	GB-AISi9Cu3 3.2165 226 A
GK-AlSi9Cu3	3.2163.02	Kokillenguß Gußzustand	110 bis 160 (100)	180 bis 240 (160)	1 bis 3 (0,5)	70 bis 110 (65)		Mg 0,1 bis 0,5 Al Rest	Sn 0,1 Ti 0,15 Zn 1,2 Sonstige:	
									einzeln 0,05 insgesamt 0,15	
G-AlSi6Cu4	3.2151.01	Sandguß Gußzustand	100 bis 150 (100)	160 bis 200 (140)	1 bis 3 (0,5)	65 bis 90 (60)	2,75	Si 5,0 bis 7,5 Cu 3,0 bis 5,0	Fe 1,0 N: 0,3	GB-AlSi6Cu4 3.2155 225
GK-AlSi6Cu4	3.2151.02	Kokillenguß Gußzustand	120 bis 180 (110)	180 bis 240 (160)	1 bis 3 (0,5)	75 bis 110 (65)		Mg 0,1 bis 0,5 Al Rest	Sn 0,1 Ti 0,15 Zn 2,0 Sonstige: einzeln 0,05 insgesamt 0,15	
1) Siehe Seite 3										

333

Sec.

Tabelle 2. Legierungen für Sand-, Kokillen- und Feinguß Legierungen mit besonderen mechanlschen Eigenschaften

- Werkstoff-	,	Werkstoff-		Werk	Werkstoffeigenschaften	ıften		Zusammensetzung Massenanteile in %	setzung sile in %	Zugehöriges
Kurzzeichen	Nummer	Gießverfahren und Lieferzustand	0,2- Grenze R _{p 0,2} N/mm ²	Zug- festigkeit R _m N/mm ²	Bruch- dehnung As	Brinell- härte HB 5/250	Dichte kg/dm³ ≈	Legierungs- bestandteile	Zulässige Beimengungen ¹) _{max} .	
G-AlSil1	3.2211.01	Sandguß Gußzustand	70 bis 100 (70)	150 bis 200 (140)	6 bis 12 (5)	45 bis 65 (45)	2.65	Si 10,0 bis 11,8 Mg 0,001 bis 0,4 Al Rest	Cu 0,03 Fe 0,18 Mn 0,03	GB-AISi11 3.2212
G-AlSi11g	3.2211.81	geglüht²)	70 bis 100 (70)	150 bis 200 (140)	8 bis 13 (7)	45 bis 65 (40)			Ti 0,15 Zn 0,07 Sonstige:	
GK-AlSi11	3.2211.02	Kokillenguß Gußzustand	80 bis 110 (80)	170 bis 230 (150)	7 bis 13 (6)	45 bis 65 (45)			einzeln 0,03 insgesamt 0,10	
GK-AlSi11g	3.2211.82	geglüht²)	80 bis 110 (80)	170 bis 230 (150)	9 bis 17 (8)	45 bis 65 (40)				
G-AlSi9Mg wa	3.2373.61	Sandguß warmausgehärtet	190 bis 240 (180)	230 bis 300 (220)	2 bis 5 (2)	75 bis 110 (75)	2,65	Si 9,0 bis 10,0 Mg 0,25 bis 0,45 Ai Best	Cu 0.05 Fe 0.18 Mn 0.10	GB-AISi9Mg 3.2333
GK-AlSi9Mg wa	3.2373.62	Kokillenguß warmausgehärtet	200 bis 280 (190)	250 bis 340 (240)	4 bis 7 (3)	80 bis 115 (80)			Ti 0,15 Zn 0,07 Sonstige: einzeln 0,03 insgesamt 0,10	
1) Siehe Seite 3			-				7. C.		- Anteilen über 0.1	bis 0.4 % könner

Der Zustand geglüht wird ohne Abschrecken erreicht und bezieht sich auf Legierungen mit Mg-Anteilen über 0,1 bis 0,4 % können warmausgehärtet werden. Für diesen Zustand müssen die Werkstoffeigenschaften vereinbart werden.

litti

œ.
g
\subseteq
_
7
-
a
Š
٠,
τ
ō
ĭĭ
<u></u>
_
αi
(D)
_
<u></u>
×
Ω

Werkstoff-				Werk	Werkstoffeigenschaften	aften		Zusammensetzung	setzung	Zuaehöriaes
-		Gießverfahren	0.2-	Zug-	Bruch-	Brinell-	Dichte	Massenanteile in %	eile in %	Blockmetall
Kurzzeichen	Nummer	und Lieferzustand	Grenze R _{p 0.2} N/mm ²	festigkeit R _{im} N/mm²	dehnung As	härte HB 5/250	kg/dm³	Legierungs- bestandteile	Zulässige Beimengungen ¹)	nach DIN 1725 Teil 5
G-AlSi7Mq wa	3.2371.61	Sandquß	190 bis 240	230 bis 310	2 bis 5	75 bis 110	2.65	Si 6.5 bis 7.5	Cu 0.05	GB-AISi7Mo
1		warmausgehärtet	(190)	(230)	(2)	(75)	ì	Mg 0,25 bis 0,45	Fe 0,18	2.2335
GK-AlSi7Mg wa	3.2371.62	Kokillenguß warmausgehärtet	200 bis 280 (200)	250 bis 340 (250)	5 bis 9 (3)	80 bis 115 (80)		Al Rest	Zn 0,07 Sonstige:	ı
GF-AlSi7Mg wa	3.2371.63	Feinguß warmausgehärtet	200 bis 260 (190)	260 bis 320 (230)	3 bis 6 (3)	80 bis 110 (70)			einzein 0,03 insgesamt 0,10	
G-AlCu4Ti ta	3.1841.63	Sandguß teilausgehärtet	180 bis 230 (160)	280 bis 380 (240)	5 bis 10 (3)	85 bis 105 (80)	2,75	Cu 4,5 bis 5,2 Ti 0,15 bis 0,30	Fe 0,18 Si 0,18	GB-AICu4Ti 3.1842
G-AlCu4Ti wa	3.1841.61	Sandguß warmausgehärtet	200 bis 260 (180)	300 bis 380 (250)	3 bis 8 (2)	95 bis 110 (90)		Mn 0,001 bis 0,5 Al Rest	Zn 0,07 Sonstige: einzeln 0,03	1
GK-AlCu4Ti ta	3.1841.64	Kokillenguß teilausgehärtet	180 bis 230 (170)	320 bis 400 (260)	8 bis 18 (4)	90 bis 105 (85)			insgesamt 0,10	
GK-AlCu4Ti wa	3.1841.62	Kokillenguß warmausgehärtet	220 bis 270 (200)	330 bis 400 (280)	7 bis 12 (3)	95 bis 110 (90)				
G-AlCu4TiMg ka	3.1371.41	Sandguß kaltausgehärtet	220 bis 280 (180)	300 bis 400 (240)	5 bis 15 (3)	90 bis 115 (85)	2,75	Cu 4,2 bis 4,9 Mg 0,15 bis 0,30	Fe 0,18 Si 0,18	GB-AICu4TiMg 3.1372
GK-AlCu4TiMg ka	3.1371.42	Kokillenguß kaltausgehärtet	220 bis 300 (200)	320 bis 420 (280)	8 bis 18 (5)	95 bis 115 (90)		II 0,15 bis 0,30 Mn 0,001 bis 0,5 Al Rest	Zn 0,07 Sonstige: einzeln 0,03	1
GF-AlCu4TiMg ka	3.1371.45	Feinguß kaltausgehärtet	220 bis 280 (180)	300 bis 400 (270)	5 bis 10 (3)	90 bis 120 (85)			insgesamt 0,10	
1) Siehe Seite 3										

8883

CASA

Tabelle 3. Legierungen für Sand-, Kokillen- und Feinguß Legierungen für besondere Verwendung

Legierungei	ו וחו מפסטיותי	Legierungen iur Desoliucie Verweilung						1		
Werkstoff-				Werks	Werkstoffeigenschaften	ıften		Zusammensetzung Massenanteile in %	rsetzung eile in %	Zugehöriges
Kurzzeichen	Nummer	Gießverfahren und Lieferzustand	0.2 - Grenze $R_{\rm p.0.2}$	Zug- festigkeit R _m	Bruch- dehnung A ₅	Brinell- härte HB 5/250	Dichte kg/dm³ ≈	Legierungs- bestandteile	Zulässige Beimengungen¹) _{max}	
G-AlMg3	3.3541.01	Sandguß Gußzustand	70 bis 100 (60)	140 bis 190 (130)	3 bis 8 (3)	50 bis 60 (45)	2.7	Mg 2,5 bis 3,5 Mn 0,001 bis 0,4 Ti 0,001 bis 0,20	Cu 0.05 Fe 0.5 Si 0.5	GB-AIMg3 3.3542 242
GK-AIMg3	3.3541.02	Kokillenguß Gußzustand	70 bis 100 (70)	150 bis 200 (150)	5 bis 12 (4)	50 bis 60 (50)		Al Rest Be nach Vereinbarung	Zn 0,10 Sonstige: einzeln 0,05	
GF-AIMg 3	3.3541.09	Feinguß Gußzustand	90 bis 120 (80)	150 bis 200 (140)	3 bis 8 (3)	60 bis 80 (55)			insgesamt 0,15	
G-AIMg3Si	3.3241.01	Sandguß Gußzustand	80 bis 100 (70)	140 bis 190 (130)	3 bis 8 (3)	50 bis 60 (45)	2.7	Mg 2,5 bis 3,5 Si 0,9 bis 1,3 Mn 0,001 bis 0,4	Cu 0,05 Fe 0,5 Zn 0,10	GB-AIMg3Si 3.3242 243
G-AlMg3Si wa	3.3241.61	Sandguß warmausgehärtet	120 bis 160 (120)	200 bis 280 (180)	2 bis 8 (2)	65 bis 90 (60)		Ti 0,001 bis 0,20 Al Rest Be nach Ver-	Sonstige: einzeln 0,05 insgesamt 0 15	
GK-AlMg3Si	3.3241.02	Kokillenguß Gußzustand	80 bis 100 (80)	150 bis 200 (140)	4 bis 10 (4)	50 bis 65 (50)		einbarung		
GK-AlMg3Si wa	3.3241.62	Kokillenguß warmausgehärtet	120 bis 180 (120)	220 bis 300 (220)	3 bis 10 (3)	65 bis 90 (65)				
GF-AlMg3Si wa	3.3241.63	Feinguß warmausgehärtet	120 bis 160 (120)	200 bis 280 (180)	2 bis 8 (2)	60 bis 80 (55)				
1) Siehe Seite 3										

3833

Tabelle 3. (Fortsetzung)

27 - 4 - 1 /4/				Werk	Werkstoffeigenschaften	aften		Zusammensetzung	setzung	ZuochörioonZ
Werkstoll		Gießverfahren	6	7,15	ָ ק	Brinell.	Dichte	Massenante	eile in %	Blockmetall
Kurzzeichen	Nummer	und Lieferzustand	$R_{ m p.0.2}$ Orenze $R_{ m p.0.2}$ N/mm 2	estigkeit R _m N/mm ²	dehnung A_5	härte HB 5/250	vocine kg/dm³ ≈	Legierungs- bestandteile	Zulässige Beimengungen¹) ^{max}	nach DIN 1725 Teil 5
	0	C	00 + 00	000 514 034	6 .i.d	70 Jin 30	90	א א א א א א א א א א א א א א א א א א א	y ()	Se.AIMas
G-AIMg5	3.3561.01	Sandgus Gußzustand	(90)	(140)	3 DIS 0 (2)	_	0,7	Mn 0,001 bis 0,4 Ti 0,001 bis 0,4	Fe 0,5 Si 0,5	3.3562 244
GK-AlMg5	3.3561.02	Kokillenguß Gußzustand	100 bis 140 (100)	180 bis 240 (150)	4 bis 10 (2)	60 bis 75 (55)		Al Rest Be nach Ver- einbarung	Zn 0,10 Sonstige: einzeln 0,05	
					_					
G-AIMg5Si	3.3261.01	Sandguß Gußzustand	110 bis 130 (100)	160 bis 200 (140)	2 bis 4 (1)	60 bis 75 (55)	2,6	Mg 4,5 bis 5,5 Si 0,9 bis 1,5 Mn 0001 bis 0.4	Cu 0,05 Fe 0,5 Zn 0.10	GB-AIMg5Si 3.3262 245
GK-AIM95Si	3.3261.02	Kokillenguß Gußzustand	110 bis 150 (100)	180 bis 240 (150)	2 bis 5 (1)	65 bis 85 (60)		Ti 0,001 bis 0,20 Al Rest	Sonstige: einzeln 0,05	
								einbarung	insgesaalit 0, 13	
G-AlSi5Mg	3.2341.01	Sandguß Gußzustand	100 bis 130 (90)	140 bis 180 (130)	1 bis 3 (0,5)	55 bis 70 (55)	2,7	Si 5,0 bis 6,0 Mg 0,4 bis 0,8	Cu 0,05 Fe 0,5	GB-AISi5Mg 3.2342
GK-AlSi5Mg	3.2341.02	Kokillenguß Gußzustand	120 bis 160 (100)	160 bis 200 (140)	1,5 bis 4 (1)	60 bis 75 (60)		Mil 0,001 bis 0,4 Ti 0,001 bis 0,20 Al Rest	Sonstige: einzeln 0,05	662
GK-AlSi5Mg wa	3.2341.62	Kokillenguß warmausgehärtet	240 bis 290 (180)	260 bis 320 (190)	1 bis 3 (0,5)	90 bis 110 (90)	2,7			
	:									
1) Siehe Seite 3										

188

Tabelle 4. Legierunger	Legierungen für Druckguß	91								
- Merkstoff-				Werks	Werkstoffeigenschaften ²)	ten²)	-	Zusammensetzung Massenanteile in %	setzung sile in %	Zugehöriges
Kurzzeichen	Nummer	Gießverfahren und Lieferzustand	0.2 -Grenze $R_{ m p~0.2}$	Zug- festigkeit R _m	Bruch- dehnung A_5	Brinell- härte HB 5/250	Dichte kg/dm³	Legierungs- bestandteile	Zulässige Beimengungen¹)	nach DIN 1725 Teil 5
			N/mm ²	N/mm ²	%		2		тах.	
GD-AlSi9Cu3	3.2163.05	Druckguß Gußzustand	140 bis 240	240 bis 310	0,5 bis 3	80 bis 120	2,75	Si 8,0 bis 11,0 Cu 2,0 bis 3,5 Mn 0,1 bis 0,5 Mg 0,1 bis 0,5 Al Rest	Fe 1,2 Ni 0,3 Pb 0,2 Sn 0,1 Ti 0,15 Zn 1,2 Sonstige: einzeln 0,05 insgesamt 0,15	GBD-AISi9Cu3 3.2166 226
GD-AlSi12	3.2582.05	Druckguß Gußzustand	140 bis 180	220 bis 280	1 bis 3	60 bis 100	2.65	Si 10,5 bis 13,5 Mn 0,001 bis 0,4 Al Rest	Cu 0,10 Fe 1,0 Mg 0,05 Ti 0,15 Zn 0,1 Sonstige: einzeln 0,05 insgesamt 0,15	GBD-AlSi12 3.2586 230
GD-AlSi12(Cu)	3.2982.05	Druckguß Gußzustand	140 bis 200	220 bis 300	1 bis 3	60 bis 100	2,65	Si 10,5 bis 13,5 Mn 0,1 bis 0,5 Al Rest	Cu 1.2 Fe 1.2 Mg 0.4 Ni 0.2 Pb 0.2 Sn 0.1 Ti 0.15 Zn 0.5 Sonstige: einzeln 0.05 insgesamt 0.15	GBD-AlSi12(Cu) 3.2985 231
1) Siehe Seite 3 2) Probestabwerte.	siehe auch B	Siehe Seite 3 Probestabwerte, siehe auch Beiblatt 1 zu DIN 1725 Teil 2	. Teil 2							

HHE

Tabelle 4. (Fortsetzung)	(b)									
Werkstoff-				Werks	Werkstoffeigenschaften ²)	ften ²)		Zusammensetzung	setzung	Zugehöriges
		Gießverfahren	0,2-	Zug-	Bruch-	Brinell-	Dichte	Massenantelle III %	% II alla	Blockmetall
Kurzzeichen	Nummer	Lieferzustand	Grenze $R_{\rm p~0.2}$ N/mm ²	festigkeit R _m N/mm²	dehnung A_5 %	härte HB 5/250	kg/dm³ ≈	Legierungs- bestandteile	Zulässige Beimengungen¹) _{max}	nach DIN 1725 Teil 5
GD-ALSi10Mg	3.2382.05	Druckguß Gußzustand	140 bis 200	220 bis 300	1 bis 3	70 bis 100	2,65	Si 9,0 bis 11,0 Mg 0,20 bis 0,50 Mn 0,001 bis 0,4 Al Rest	Cu 0,10 Fe 1,0 Ti 0,15 Zn 0,1 Sonstige: einzeln 0,05 insgesamt 0,15	GBD-AISi10Mg 3.2336 239
GD-AlMg9	3.3292.05	Druckguß Gußzustand	140 bis 220	200 bis 300	1 bis 5	70 bis 100	2.6	Mg 7,0 bis 10,0 Si 0,01 bis 2,5 Mn 0,2 bis 0,5 Al Rest Be nach Ver- einbarung	Cu 0,05 Fe 1,0 Ti 0,15 Zn 0,1 Sonstige: einzeln 0,05 insgesamt 0,15	GBD-AIMg9 3.3293 349
1) und 2) siehe Seite 9	6									

Tabelle 5. Weitere Werkstoffeigenschaften und Hinweise für die Verwendung Verbelle 5. Vergleichende Bewertung weiterer Werkstoffeigenschaften

		Duckedageselfung	pahandling	Korrosionsbeständig-	eständig-				
7	GioR.	Operilaciieii.		keit gegen	gen	Span-	Schweiß-	Hinweise für die Verwendung	
Werkstoff- Kurzzeichen	barkeit	nische Polier- barkeit	dekorative anodische Oxidation 1)	Witte- rungs- einflüsse	Meer- wasser	barkeit	barkeit		
Legierungen für Sand- und Kokillenguß	d Kokillenguê								
G-/GK-AISi12 ausge-	ausge- zeichnet	aus- reichend	nicht angewandt	sehr gut	gut	gut	ausge- zeichnet	Für verwickette, dünnwandige, druckdichte und schwingungsfeste Gußstücke bei sehr guter Korrosionsbeständigkeit	
G-/GK-AlSi12(Cu)	ausge- zeichnet	aus- reichend	nicht angewandt	aus- reichend	nicht angewandt	gut	ausge- zeichnet	Wie vorstehend, mit Einschränkung hinsichtlich der Korrosionsbeständigkeit und Zähigkeit Abnich wie G/GK-AlSi12 iedoch mit hoher Festigkeit	
G-/GK-AlSi10Mg wa	ausge-	gut	nicht angewandt	sehr gut	gut	senr gur	zeichnet	nach Wärmebehandlung	
G-/GK-AlSi10Mg(Cu) wa	ausge-	gut	nicht	aus- reichend	nicht angewandt	sehr gut	ausge- zeichnet	Wie vorstehend, mit Einschlankung imisichlich der Korrosionsbeständigkeit und Zähigkeit.	
G-/GK-AlSi9Cu3	ausge-	gut	nicht	bedingt	nicht	sehr gut	sehr gut	Vielseitig angewandte Legierung, auch für Verwickeite, dünnwandige Gußstücke, warmfest	
G-/GK-AlSi6Cu4	zeichnet sehr gut	gut	angewandt nicht angewandt	bedingt	nicht angewandt	sehr gut	gut	Vielseitig angewandte Legierung, warmfest	1
Legierungen für Sand-, Kokillen- und Feinguß	okillen- und I	Feinguß schen Eigenst	chaften						- 1
G-/GK-AISi11	ausge-	aus-	nicht	sehr gut	gut	gut	ausge- zeichnet	Für verwickelte, dünnwandige, druckdichte, schwingungs- und schlagfeste Gußstücke, wie Automobilräder	
G-/GK-AlSi9Mg wa	zeichnet ausge- zeichnet	gut	nicht angewandt	sehr gut	gut	sehr gut	ausge- zeichnet	Für verwickelte, dünnwandige Gußstücke mit hoher Festigkeit und guter Zähigkeit (warm ausgehärtet), sehr quter Korrosionsbeständigkeit, Luftfahrzeugbau	
G-/GK-/GF-AlSi7Mg wa	sehr gut	gut	nicht angewandt	sehr gut	gut	sehr gut	ausge- zeichnet	Für Gußstücke mit mittlerer bis größerer Wanddicke, hoher Festigkeit und Zähigkeit (warm ausgehärtet), korrosionsbeständig, Luftfahrzeugbau, als Feinguß auch für dünn-	
G-/GK-AlCu4Ti ta/wa G-/GK-/GF-AlCu4TiMg ta/wa	aus- reichend aus- reichend	sehr gut	nicht angewandt nicht angewandt	bedingt	nicht angewandt nicht angewandt	ausge- zeichnet ausge- zeichnet	aus- reichend aus- reichend	wandige Gußstucke Für einfache Gußstücke, die höchsten Festigkeits- und Zä- higkeitsansprüchen zu genügen haben, Luftfahrzeugbau Für einfache Gußstücke mit höchster Festigkeit (warm ausgehärtet) oder höchster Zähigkeit (kalt ausgehärtet), Luftfahrzeugbau, als Feinguß auch für verwickelte Gußstücke	:
			a chidosopoise	Owie ein Har	anodisieren g	legen Versch	leiß und erhöl	sowie ein Hartanodisieren gegen Verschleiß und erhöhten Korrosionsangriff sind bei allen Legierungen möglich.	
1) Eine anodische Oxidation zum allgemeinen Korrosionsschutz	tion zum alige	emeinen Nuit	USIOIISSCIIUIE &		7				,

Anmerkung: Die Bewertung der Eigenschaften in der Tabelle gibt lediglich Anhaltspunkte. Die Eigenschaften können sich je nach Werkstoffzustand, Anwendungsgebiet oder Behandlungsart anmerkung: Die Bewertung der Eigenschaften sinngemäß für Sand-, Kokillen- und Druckguß. Handelt es sich um aushärtbare Legierungen, so ist der ausgehärtete Zustand berücksichtigt.

388

· Cry

g
ξ
ţ21
se
ť
ß
$\overline{}$
5
<u>e</u>
bel
ap

		Oberflächer	Oberflächenbehandlung	Korrosionsbeständig	beständig-			
Werkstoff- Kurzzeichen	Gieß- barkeit	mecha- nische Polier- barkeit	dekorative anodische Oxidation ¹)	keit g Witte- rungs- einflüsse	keit gegen e- Meer- s- wasser	Span- barkeit	Schweiß- barkeit	Hinweise für die Verwendung
Legierungen für Sand- und Kokillenguß Legierungen für besondere Verwendungen	d Kokillenguß e Verwendun	3 igen						
G-/GK-/GF-AIMg3	aus- reichend	ausge- zeichnet	ausge- zeichnet	ausge- zeichnet	ausge- zeichnet	ausge- zeichnet	aus- reichend	Hervorragende Korrosionsbeständigkeit, besonders gegen Meerwasser sowie schwach alkalische Medien, für Gußstücke mit dekorativer Oberfläche
G-/GK-/GF-AIMg3Si	gut	ausge- zeichnet	sehr gut	ausge- zeichnet	sehr gut	ausge- zeichnet	aus- reichend	Wie vorstehend, jedoch mit höherer Festigkeit (ausgehärtet), etwas weniger korrosionsbeständig, besser gießbar und warmfest
G-/GK-AIMg5	aus- reichend	ausge- zeichnet	ausge- zeichnet	ausge- zeichnet	ausge- zeichnet	ausge- zeichnet	gut	Gußstücke mit sehr guter Beständigkeit gegen Meerwasser und schwach alkalischen Lösungen, für Innenund Außenarchitektur, Nahrungsmittel- und chemische Industrie, Feuerlöschwesen
G-/GK-AIMg5Si	gut	ausge- zeichnet	sehr gut	ausge- zeichnet	sehr gut	ausge- zeichnet	gut	Wie vorstehend, jedoch für vorwiegend verwickelte Gußstücke, etwas geringere Korrosionsbeständigkeit
G-/GK-AlSi5Mg	gut	sehr gut	aus- reichend	sehr gut	gut	sehr gut	sehr gut	Für korrosionsbeständige Gußstücke (Nahrungsmittel- industrie und Feuerlöschwesen)
Legierungen für Druckguß	_							
GD-AlSi9Cu3	ausge- zeichnet	gut	nicht angewandt	bedingt	nicht angewandt	sehr gut	bedingt	Vielseitig angewandte Legierung, auch für verwickelte Gußstücke
GD-AlSi12(Cu)	ausge- zeichnet	gut	nicht angewandt	aus- reichend	nicht angewandt	gut	bedingt	Für verwickelte, dünnwandige Gußstücke
GD-AlSi12	sehr gut	gut	nicht angewandt	gut	aus- reichend	gut	bedingt	Wie vorstehend, aber für korrosionsbeständige und schwingungsfeste Gußstücke
GD-AlSi10Mg	ausge- zeichnet	gut	nicht angewandt	gut	aus- reichend	sehr gut	bedingt	Wie vorstehend, jedoch besser gießbar und besser spanbar.
GD-AIMg9	aus- reichend	ausge- zeichnet	aus- reichend	ausge- zeichnet	sehr gut	ausge- zeichnet	nicht an- gewandt	Für Teile mit hohen Ansprüchen an die Korrosionsbeständigkeit und Oberflächenaussehen, z.B. optische Industrie, Büromaschinen und Haushaltsgeräte
1) Siehe Seite 11								

经经

Zitierte Normen und andere Unterlagen

•
Zahlenangaben; Runden
Technische Lieferbedingungen für Gußstücke aus metallischen Werkstoffen; Allgemeine Bedingungen
Aluminiumlegierungen, Gußlegierungen; Sandguß, Kokillenguß, Druckguß, Feinguß; Anhaltsangaben über
mechanische und physikalische Eigenschaften sowie gießtechnische Hinweise
Aluminiumlegierungen, Gußlegierungen; Blockmetall (Masseln), Flüssigmetall; Zusammensetzung
Bescheinigungen über Materialprüfungen
Prüfung metallischer Werkstoffe; Zugproben, Richtlinien für die Herstellung
Prüfung metallischer Werkstoffe; Zugversuch
Zugproben für Druckguß aus Nichteisenmetallen
Prüfung metallischer Werkstoffe; Härteprüfung nach Brinell
Gießen von Probestäben aus Aluminiumlegierungen für den Zugversuch (Sandguß)
Gießen von Probestäben aus Aluminiumlegierungen für den Zugversuch (Kokillenguß)
Gießen von Probestäben aus Magnesium- und Aluminiumlegierungen für den Zugversuch (Sandguß)
Gießen von Probestäben aus Aluminium- und Magnesiumlegierungen für den Zugversuch (Kokillenguß)
Aluminium-Gußlegierungen; Zusammensetzung und mechanische Eigenschaften von Sand-, Kokillen- und Druckgußstücken

Analyse der Metalle²)

Band I Schiedsanalysen Band III Probenahme

Ergänzungsband zu den Bänden I Schiedsanalysen * II Betriebsanalysen

Weitere Normen und andere Unterlagen

DIN 1712 Teil 1	Aluminium; Masseln
DIN 1712 Teil 3	Aluminium; Halbzeug
DIN 1725 Teil 1	Aluminiumlegierungen; Knetlegierungen
DIN 1725 Teil 3	Aluminiumlegierungen; Vorlegierungen
Beiblatt 1 zu	Aluminiumlegierungen, Gußlegierungen, Blockmetall (Masseln), Flüssigmetall; Zusammensetzung, Hinweise
DIN 1725 Teil 5	zur Legierungsverarbeitung
DIN 17 007 Teil 4	Werkstoffnummern; Systematik der Hauptgruppen 2 und 3: Nichteisenmetalle
Merkblatt W 83)	Die Wärmebehandlung von Aluminium-Gußlegierungen
GDM/VDG-Schrifte	n4) Sand- und Kokillenguß aus Aluminium, Technische Richtlinien Druckguß aus Nichteisenmetallen:

Frühere Ausgaben

DIN 1713 Teil 2: 12.41; DIN 1744: 09.36, 03.40; DIN 1725: 11.42; DIN 1725 Teil 2: 07.43, 01.45, 06.51, 06.59x, 09.70, 05.73, 09.73

Änderungen

Gegenüber Ausgabe September 1973 wurden folgende Änderungen vorgenommen:

- a) Die Zusammensetzung der Blockmetalle wurde aus DIN 1725 Teil 2 in DIN 1725 Teil 5 überführt.
- b) Es wurden folgende Legierungen gestrichen:

Richtlinien

G-/GK-AlMg3(Cu) (Ersatz: G-/GK-AlMg3Si)
G-AlMg10 ho (Ersatz: G-AlMg5)
GD-AlSi10Mg(Cu) (Ersatz: GD-AlSi12(Cu)
GD-AlSi6Cu4 (Ersatz: GD-AlSi9Cu3)
G-/GK-AlSi5Mg ka (Ersatz: G-/GK-AlSi5Mg wa)
G-/GK-AlCu4TiMg wa (Ersatz: G-/GK-AlCu4TiMg ka)

- c) Es wurde die Legierung G-/GK-AlSi11 aufgenommen.
- d) Das Werkstoff-Kurzzeichen G-AlSi8Cu3 wurde in G-AlSi9Cu3 geändert; ferner die Werkstoff-Nummer 3.2161 in 3.2163.
- e) Die Angaben über die Zusammensetzung und Werkstoffeigenschaften wurden überprüft und für einige Legierungen dem Stand der Technik angepaßt, z.B. Feinguß aufgenommen.
- f) Die Angaben über Biegewechselfestigkeit und andere physikalische Eigenschaften wurden im Beiblatt 1 zu DIN 1725 Teil 2 zusammengefaßt.
- g) Der Text wurde redaktionell überarbeitet; siehe Erläuterungen.

Berlin - Heidelberg - New York; Springer-Verlag

3) Zu beziehen durch:

Aluminium-Zentrale e. V., Postfach 12 07, 4000 Düsseldorf 1

4) Zu beziehen durch:

VDG, Verein Deutscher Gießereifachleute, Sohnstraße 70, 4000 Düsseldorf 1

²⁾ Zu beziehen durch:

Erläuterungen

Die Entwicklung auf dem Gebiet der Aluminium-Gußlegierungen macht eine Neufassung von DIN 1725 Teil 2, Ausgabe September 1973, nach folgenden Gesichtspunkten notwendig:

- Anpassung an den nationalen und internationalen Stand der Legierungs- und Verarbeitungstechnologie.
- Berücksichtigung von Rationalisierungsbestrebungen aus technisch-wirtschaftlichen Gründen.
- Trennung der Zusammensetzung von Gußstücken und Blockmetall, um dem Gießer die technisch notwendige Verarbeitungsspanne einzuräumen; Blockmetall siehe DIN 1725 Teil 5.
- Verbesserung in der Übersichtlichkeit der genormten Gußlegierungen.
- Klare Gliederung in bezug auf die Werkstoffeigenschaften.

Der Zusammenhang mit ISO 3522 - 1984

Cast aluminium alloys

Chemical composition and mechanical properties

Alliages d'aluminium moulés

Composition chimique et caractéristiques mécaniques

Aluminium-Gußlegierungen

Chemische Zusammensetzung und Festigkeitseigenschaften

stellt sich wie folgt dar:

Von den insgesamt 24 Gußlegierungen (19 Sand- und Kokillenguß- und 5 Druckgußlegierungen) sind 13 Legierungen in DIN 1725 Teil 2 enthalten, deren Zusammensetzung und Eigenschaften als gut übereinstimmend bezeichnet werden können.

Die übrigen ISO-Legierungen sind in DIN 1725 Teil 2 nicht enthalten, wie umgekehrt in DIN 1725 Teil 2 eine Reihe von Legierungen enthalten sind, die auf dem deutschen Markt von Bedeutung sind.

In Übereinstimmung mit ISO 3522-1984 wurde die bereits früher praktizierte Trennung nach Sand- und Kokillenguß-Legierungen einerseits und Druckguß-Legierungen andererseits wieder eingeführt.

Die Gliederung sieht nunmehr für die Auswahl der geeigneten Aluminium-Gußlegierungen vor:

Tabelle 1. Legierungen für allgemeine Verwendung

Tabelle 2. Legierungen mit besonderen mechanischen Eigenschaften

Tabelle 3. Legierungen für besondere Verwendung

pelle 4. Druckguß-Legierungen

Wegen der Anpassung an den Stand der Technik wurden folgende Legierungen oder Zustände aufgrund zu geringer technischer Bedeutung nicht mehr berücksichtigt (in Klammern werden die bestmöglichen Ersatzlegierungen angegeben):

G-/GK-AlMg3(Cu) (Ersatz: G-/GK-AlMg3Si) G-AlMg10 ho (Ersatz: G-AlMg5)

GD-AlSi10Mg(Cu) (Ersatz: GD-AlSi12(Cu) und

GD-AlSi10Mg)

GD-AlSi6Cu4 (Ersatz: GD-AlSi9Cu3)
G-/GK-AlSi5Mg ka (Ersatz: G-/GK-AlSi5Mg wa)
G-/GK-AlCu4TiMg wa (Ersatz: G-/GK-AlCu4TiMg ka)

Neu aufgenommen wurde G-/GK-AlSi11 in die Gruppe der Legierungen mit besonderen Eigenschaften wegen ihrer

großen Anwendungsbreite.

Zur Verbesserung der Gießbarkeit, insbesondere des Fließund Formfüllungsvermögens wurde – auch in Anlehnung an ausländische Normen – bei der bisherigen Gußlegierung G-AlSi8Cu3 der Siliciumgehalt angehoben. Um Werkstoffverwechslungen zu vermeiden, wurde das Werkstoff-Kurzzeichen in G-/GK-/GD-AlSi9Cu3 geändert und eine andere Werkstoff-Nummer erteilt: 3.2163.

Die Gehalte an Legierungsbestandteilen und zulässigen Beimengungen wurden unter Berücksichtigung qualitativer, werkstofflicher, verarbeitungs- und gießtechnischer und rohstoffmäßiger Gründe überprüft und, wo notwendig, neu festgelegt.

In der Norm wurden nur die Werkstoffeigenschaften, 0,2 %-Dehngrenze ($R_{\rm p~0.2}$), Zugfestigkeit ($R_{\rm m}$), Bruchdehnung ($A_{\rm 5}$) und Brinellhärte (HB 5/250) beibehalten.

Die Werte wurden überprüft und, wo notwendig, angeglichen. Weitere Werkstoffeigenschaften, wie z.B. physikalische

Weitere Werkstoffeigenschaften, wie z.B. physikalische Eigenschaften bei unterschiedlichen Temperaturen, Dauerschwing-(Biegewechsel-)festigkeit u.a. sind dem Beiblatt 1 zu DIN 1725 Teil 2 zu entnehmen.

Zur Kennzeichnung der verschiedenen Wärmebehandlungszustände siehe nachstehende Tabelle:

333

Zustand	DIN-Norm	USA-Norm	ISO
geglüht oder geglüht und abgeschreckt	g	T 4	0
lösungsgeglüht, abge- schreckt und kaltaus- gelagert	ka	T 4	ТВ
lösungsgeglüht, abge- schreckt und warmaus- gelagert (Vollaushärtung)	wa	Т6	TF
lösungsgeglüht, abge- schreckt, verkürzt warm- ausgelagert (Teilaushärtung)	ta	-	-

Die Übersicht "Vergleichende Bewertung weiterer Werkstoffeigenschaften" wurde überarbeitet und entsprechend der Neugliederung der Gußlegierungen auf den neuesten Stand gebracht.

Die Fußnoten wurden zum Teil neu gefaßt und mit anderen Texten versehen.

Eine große Anzahl der Legierungen stimmt hinsichtlich der chemischen Zusammensetzung und den aufgeführten Eigenschaftswerten weitgehend mit den Angaben in anderen ausländischen Normen überein.

Wichtige ausländische Normen⁵) für Aluminium-Gußwerkstoffe sind:

Frankreich NF A 57-702 NF A 57-703	Japan JIS H 5202 JIS H 5032	ISO 3522 - 1984
Großbritannien	Österreich	
BS 1490	ÖNORM M 3429	
Italien	Schweiz	
UNI 3048 bis 3059 UNI 3599 bis 3601 UNI 4513 bis 4514 UNI 5074 bis 5080	VSM 10 895	
UNI 7257	USA	
UNI 7363	ASTM B 26 (Sandg	,
UNI 7369 UNI 8024	ASTM B 85 (Drucks	•
UNI 0024	ASTM B 108 (Kokill	engub)

⁵⁾ Zu beziehen durch:

DIN Deutsches Institut für Normung e.V., Auslandsnormenverkauf, Burggrafenstraße 6, 1000 Berlin 30

Internationale Patentklassifikation

C 22 C 21/00 B 22 D 21/02 G 01 N 33/20 G 01 N 3/00

Aluminiumlegierungen Gußlegierungen

Sandguß Kokillenguß Druckguß Feinguß Anhaltsangaben über mechanische und physikalische Eigenschaften sowie gießtechnische Hinweise Beiblatt 1 zu DIN 1725 Teil 2

Aluminium alloys, casting alloys, sand castings, gravity die castings, pressure die castings, investment castings; information about mechanical and physical properties as well as casting techniques

Alliages d'aluminium, alliages de fonderie, moulage en sable, moulage en coquille, moulage sous pression, moulage de précision; information sur les propriétés mécaniques et physiques ansi que techniques de fonderie

Dieses Beiblatt enthält Informationen zu DIN 1725 Teil 2, jedoch keine zusätzlichen genormten Festlegungen

Inhalt

	Se	eite		· · · · · · · · · · · · · · · · · · ·	Seite
1 2	Hinweise zur Legierungsgruppeneinteilung Vergleich und Besonderheiten der Gießverfahren,	1	6	Festigkeitseigenschaften bei höheren Temperaturen (Warmfestigkeit, Zeitstandverhalten)	2
3	Sandguß, Kokillenguß, Druckguß, Feinguß	1	7	Festigkeitseigenschaften bei tiefen Temperaturen	3
4	Biegewechselfestigkeit (Dauerschwingfestigkeit).	2	8	Wärmebehandlung	3
5	Festigkeitseigenschaften von Aluminium-Druck-	2	9	Nicht genormte Sonderlegierungen	3

1 Hinweise zur Legierungsgruppeneinteilung

Gegenüber der früheren Ausgabe DIN 1725 Teil 2/09.73 wurden die Legierungen in ihrer Gruppenteinteilung bezogen auf Gießverfahren und Anwendung geändert.

1.1 Legierungen für allgemeine Verwendung

sind Sand- und Kokillengußlegierungen, die der Konstrukteur vorrangig berücksichtigen sollte. Sie sind gut gießbar und decken etwa 75% der Anwendungsfälle ab.

1.2 Legierungen mit besonderen mechanischen Eigenschaften

sind Sand- und Kokillengußlegierungen, die der Konstrukteur im Falle besonderer mechanischer Beanspruchung einsetzen sollte. Die durch Herstellung aus Hüttenaluminium garantierte Reinheit ermöglicht nach Warmaushärtung höchste Festigkeit bei guter Bruchdehnung bzw. ohne Warmaushärtung beste Zähigkeit. Die Streubreite der Eigenschaften ist geringer als diejenige der Legierungen in Abschnitt 1.1.

1.3 Legierungen für besondere Verwendung

sind Sand- und Kokillengußlegierungen, deren Eigenschaften weitere als die in den Abschnitten 1.1 und 1.2 genannten Möglichkeiten bieten. Als Beispiel sei genannt: spezielle Korrosionsbeständigkeit, dekorative anodische Oxidation. Eignung für bestimmte Nahrungsmittel.

1.4 Druckgußlegierungen

werden im Druckgießverfahren vergossen. Ihre Zusammensetzung unterscheidet sich leicht von der der entsprechenden Sand- und Kokillengußlegierungen. Müssen

für besondere Anwendungen andere Legierungen druckgegossen werden, ist eine Rücksprache mit dem Gußhersteller unerläßlich.

2 Vergleich und Besonderheiten der Gießverfahren, Sandguß, Kokillenguß, Druckguß, Feinguß

- 2.1 Ein kennzeichnender Unterschied zwischen dem Sandgießverfahren und den Dauerformverfahren Kokillenguß und Druckguß besteht in der höheren Erstarrungsgeschwindigkeit bei den Dauerformverfahren und damit Ausbildung eines feineren Gefüges. Daraus ergeben sich die in DIN 1725 Teil 2 aufgeführten besseren Werkstoffeigenschaften.
- 2.2 In Tabelle 1 sind wichtige Konstruktionsmerkmale enthalten, die bei dem gewählten Gießverfahren zu berücksichtigen sind. Darüber hinausgehende Forderungen des Konstrukteurs bedürfen besonderer Absprachen mit der Gießerei. Bei den Angaben handelt es sich um allgemeine Anhaltswerte.

3 Physikalische Eigenschaften (siehe Tabelle 2)

Bei den aufgeführten Werten handelt es sich um Richtwerte. Die tatsächlichen Werte können streuen. In Abhängigkeit von der Legierungszusammensetzung den Erstarrungsbedingungen sowie der Wärmebehandlung.

Bei der Wärmeleitfähigkeit und elektrischen Leitfähigkeit gilt jeweils der untere Wert für den Gußzustand bei hoher Erstarrungsgeschwindigkeit, der obere Wert für den Zustand geglüht und ofenabgekühlt. Für andere Zustände gelten entsprechende Zwischenwerte.

Fortsetzung Seite 2 bis 6

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e.V. Normenausschuß Gießereiwesen (GINA) im DIN

3.1 Weitere Angaben

a) Gleitmodul Gleitmodul $\beta \approx 0.4 \times \text{Elastizitätsmodul N/mm}^2$

b) Schubfestigkeit

Für Torsions-, Drillungs- und Verdrehbeanspruchung ergibt sich für die Schubspannungsbeanspruchbarkeit $\tau_{\rm zul} \approx 0.5~R_{\rm pzul~0.2}~{\rm N/mm^2}$

c) Druckfestigkeit $p \approx 1.5 \times R_{\rm m} \ {\rm N/mm^2}$

d) Flächenpressung

Flächenpressung $p\approx$ 0,8 × $R_{p,0.2}$ N/mm² (bei statischer Beanspruchung); bei dynamischer Beanspruchung sind von Fall zu Fall niedrigere Werte zu wählen.

e) Dämpfungsvermögen, kernphysikalische und optische Eigenschaften

siehe Aluminium-Taschenbuch, 14. Auflage, Aluminium-Verlag GmbH, Düsseldorf.

4 Biegewechselfestigkeit (Dauerschwingfestigkeit)

Verhalten von Aluminiumgußstücken bei Dauerschwingbeanspruchung

Der Widerstand gegen Ermüdung, dynamischer Beanspruchung (Zug-, Zug/Druck-, Biegungs-Torsions-Beanspruchung; Dauer- oder Zeitschwingfestigkeit nach DIN 50 100) hängt bei gegebener Gußstück-Geometrie in erster Linie von der Gefüge- und Oberflächengüte ab. Der Einfluß des Legierungstyps ist dagegen gering. Der Gehalt und die Verteilung der Poren und Lunker sowie Größe und Gestalt von Gefügebestandteilen als ausschlaggebende Merkmale Gefügeaufbaus werden weitgehend durch die Erstarrungsbedingungen in der Gießform bestimmt. In der Regel ist eine rasche Erstarrung (eine kurze Erstarrungszeit) günstig. Sie führt zu einer geringen Porenhäufigkeit und zu einem feineren Gefüge (kleinere Abstände der Dendritenarme, feineres Korn, feinere Verteilung heterogener Phasen, z.B. Silicium) und bewirkt so eine markante Erhöhung der Belastbarkeit bei Schwingbeanspruchung.

So zeigen Kokillengußproben eine höhere Zeit- oder Dauerschwingfestigkeit als Sandgußproben. Beispielsweise kann ein gesondert gegossener, in rund 5 s erstarrter Kokillengußstab aus einer ausgehärteten AlSiMg-Gußlegierung ihre Biegewechselfestigkeit von $\sigma_{\rm bW}=\pm$ 100 N/mm² bei ver Grenzschwingspielzahl von N (\pm 100) = 50 · 106 ertragen, während im Extremfall die Biegewechselfestigkeit für eine Sandgußprobe von etwa 5 min Erstarrungszeit (ungefähr 20 mm Wanddicke entnommen) auf $\sigma_{\rm bW}=\pm$ 30 N/mm² sinkt, um ohne Bruch auf gleiche Lebensdauer zu gelangen. In komplizierten Gußstücken ist es nicht möglich, in allen Partien eine gleichmäßige günstige Gefügeausbildung zu erreichen. Doch läßt sich diese durch formtechnische Maßnahmen in ausgewählten Gußstückpartien steigern.

Bei schwingender Belastung beeinträchtigen Oberflächenfehler (Rauhigkeit, Warmrisse in der Form, Fließfiguren, Formstoff- und Korrosionseinflüsse) entscheidend Belastbarkeit und/oder Lebensdauer der Gußstücke.

4.2 Biegewechselfestigkeitswerte

Die in Tabelle 3 aufgeführten Werte wurden an getrennt gegossenen Probestäben ermittelt.

Es ist zu beachten, daß im Gußstück selbst sich die Biegewechselfestigkeitswerte je nach Oberflächengüte, Gefügeausbildung usw. in ungünstigen Fällen bis auf 25% der Werte in Tabelle 3 reduzieren können.

Für Sand- und Kokillenguß sind die Biegewechselfestigkeitswerte an feinstgedrehten Rundproben nach DIN 50 113 ermittelt. Für Druckguß sind die Biegewechselfestigkeitswerte an Flachbiegeproben nach DIN 50 142 ermittelt.

Spannungsverhältnis: R = -1

Grenzschwingspielzahl: $N = 50 \cdot 10^{-6}$

Für die Funktionssicherheit eines schwingend beanspruchten Gußstückes ist die Berücksichtigung der in Tabelle 3 angegebenen Biegewechselfestigkeitswerte nicht ausreichend für die Bemessung (Gußhauteinfluß). Bei Gußstücken ist die Gestaltfestigkeit von entscheidender Bedeutung. Deshalb sollten Gußstücke, die einer dynamischen Beanspruchung unterliegen, einer dynamischen Bauteilerprobung unterworfen werden.

5 Festigkeitseigenschaften von Aluminium-Druckgußstücken

In DIN 1725 Teil 2 können für die Aluminium-Druckguß-werkstoffe nur Probestabwerte angegeben werden, da die Festigkeitswerte in den Druckgußstücken sehr stark von den jeweils vorliegenden druckgießtechnischen Bedingungen abhängig sind. Grundsätzlich weist der druckgegossene Werkstoff aufgrund der sehr schnellen Erstarrung eine höhere Festigkeit als der in Sand oder Kokille gegossene auf. Jedoch können die möglichen Begleitvorgänge bei der schnellen (turbulenten) Formfüllung die Festigkeit, Dehnung und Druckdichtheit mindern.

Der Konstrukteur kann durch eine druckgießgerechte Gußstückgestalt grundlegend dazu beitragen, daß gütemäßig hochwertige Druckgußstücke gefertigt werden können.

Andererseits stehen dem Druckgießer eine Anzahl von Techniken zur Verfügung (Nutzung aller formtechnisch gegebenen Entlüftungsmöglichkeiten, strömungstechnisch optimale Anschnittechnik, Wahl optimaler Gießparameter, Gießdruck, Nachdruck, Form- und Metalltemperatur, Anwendung von Vakuum zur Form-Zwangsentlüftung sowie gesteuerter Formentemperatur), um die erforderliche Gußstückqualität zu erzeugen. Alles dies bedarf einer engen Zusammenarbeit zwischen Konstrukteur und Gießer.

Der Druckgießer wird von Fall zu Fall aufgrund der technischen Gegebenheiten dann Aussagen über die zu erreichende Festigkeit und anderer Qualitätskriterien machen können.

Es kann nicht erwartet werden, daß in allen Gußstückquerschnitten gleiche Festigkeitswerte erzielt werden. Deshalb ist es zweckmäßig, gegebenenfalls besonders beanspruchte Partien als Prüforte festzulegen und in der Zeichnung einzutragen.

Als Anhalt für die Festigkeit in Aluminium-Druckgußstücken kann in erster Näherung von etwa 70 % der Probestabwerte ausgegangen werden.

Die übliche Festigkeitsprüfung an aus dem Gußstück herausgearbeiteten Probestäben wird jedoch der meist gegebenen sehr hohen Gestalt- und Bauteilfestigkeit der Druckgußstücke nicht gerecht. Praxisnäher und technisch ergiebiger ist daher die Bauteil(Gußstück)-prüfung mittels statischer oder dynamischer (Pulsator) Prüfung.

6 Festigkeitseigenschaften bei höheren Temperaturen

(Warmfestigkeit, Zeitstandverhalten)

Charakteristische Aussagen zum Warm-(Zeitstand-)Verhalten einiger Legierungen macht das Bild 1.

Höhere Kupfer-, Nickel- und Magnesiumgehalte erhöhen die Warmfestigkeit.

Die Legierungen G/GK-AlSi6Cu4 und G/GK/GD-AlSi9Cu3 weisen hinsichtlich Warmfestigkeit, Gießbarkeit und Kosten eine günstige Kombination auf (u.a. Hauptwerkstoffe für wassergekühlte Zylinderköpfe).

47

 $\{i_{ij},i_{j}\}$

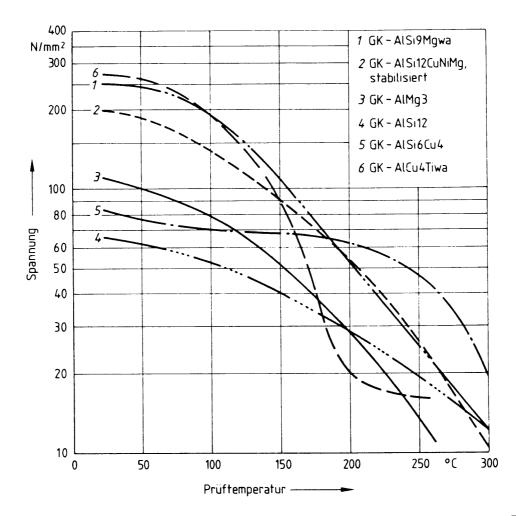


Bild 1. 0,2%/1000-h-Zeitdehngrenzen (Spannung $R_{\rm p=02}/1000$) von Aluminium-Gußlegierungen bei hoheren Temperaturen (nach Aluminium-Zentrale/Alusuisse).

Zu unterscheiden ist zwischen Legierungen im Gußzustand und den warmausgehärteten Werkstoffen. Im Hinblick auf die Erhaltung der mit der Warmaushärtung erreichten Werkstoffeigenschaften sollten diese auf Dauer nur mit max. 130 °C belastet werden 1).

Mit einer Anzahl Sonderwerkstoffen lassen sich hohe bzw. höchste Warmfestigkeitsbeanspruchungen erfüllen, siehe Abschnitt 9.

Eine große Gruppe sind hierbei die sogenannten Kolbenlegierungen (nicht genormt) für die Hubkolben-Verbrennungskraftmaschinen auf der Basis AlSiCuNiMg, weiter Sonderlegierungen vom Typ AlMgSi für z.B. luftgekühlte Zylinderköpfe und AlCuNiMg bzw. AlCuNiCoSbZr.

7 Festigkeitseigenschaften bei tiefen Temperaturen

Aluminium-Gußlegierungen weisen wie alle Aluminiumlegierungen ein günstiges Festigkeits- und Zähigkeitsverhalten bei tiefen Temperaturen auf, d. h. es tritt keine Versprödung des Werkstoffes ein. Zugfestigkeit und Streckgrenze nehmen gegenüber den Raumtemperaturwerten bei minus 100 °C um etwa 15%, bei minus 200 °C um etwa 30% zu. Die Dehnung nimmt nur unwesentlich ab. Ein Steilabfall der Zähigkeitseigenschaften tritt nicht auf.

Eine Ausnahme bildet die Legierung GD-AlMg9. Hier gehen alle mechanischen Werte bei tiefen Temperaturen geringfugig zurück.

8 Wärmebehandlung

8.1 Temperaturen und Zeiten

Hierzu gibt die Tabelle 4 Hinweise.

8.2 Bemerkungen zur Wärmebehandlung

Zur Erreichung optimaler Werte ist es erforderlich, daß die Dauer der Überführung (so kurz wie möglich) vom Lösungsglühofen in das Abschreckwasser max. 20 s nicht überschreitet.

Auch bei sachgemäßer Anordnung der Gußstucke im Warmbehandlungsofen läßt sich ein Verzug der Gußstücke nicht immer vermeiden. Ein notwendiger Richtvorgang sollte vor dem Auslagern durchgeführt werden

9 Nicht genormte Sonderlegierungen

Für spezielle Anwendungsfälle gibt es eine große Anzahl von nicht genormten Gußlegierungen ("Sonderlegierungen") Einige wichtige sind in Tabelle 5 unter Angabe der kennzeichnenden Eigenschaften/Anwendung aufgeführt.

Bei h\u00f6heren Temperaturen sind die Einflusse von Werkstoff, Zustand und Zeit zu beachten

Tabelle 1. Wichtige Konstruktionsmerkmale für die Gießverfahren

Merkmal	Sandguß	Kokillenguß	Druckguß	Feinguß	Bemerkungen
Kleinste Wanddicke mm	4 bis 6	2 bis 3	1 bis 1,5	0,8 bis 1,5	Aushebeschrägen beachten
Kleinster Bohrungsdurch- messer vorgegossen mm	10	4 bis 5	2,5	2,5	
Vorgegossener Bohrungs- durchmesser Längen-Durchmesserverhältnis unter 5 mm über 5 mm	_ 2 bis 3 × d	4 × <i>d</i> 6 × <i>d</i>	4 × <i>d</i>	1 × <i>d</i> 2 × <i>d</i>	Bei Kokillen- und Druckguß, Sackbohrungen bis $4 \times d$, bei Feinguß über 5 mm Durchmesser $1 \times d$ möglich
Bearbeitungszugabe mm	2 bis 3	1 bis 2	0,3 bis 1,0	0,3 bis 1,0	
Längentoleranzen Allgemein-Toleranzen 20 bis 40 mm 80 bis 120 mm 250 bis 315 mm 400 bis 500 mm	nach DIN 1688 Teil 1	nach DIN 1688 Teil 3	nach DIN 1688 Teil 4	siehe VDG- Merkblatt P 690	Abhängigkeit von der Guß- stückgestalt und Lage in der Form
Hinterschneidungen	kein technisches Problem	mit Sand- kernen kein technisches Problem	sollten nach Möglichkeit vermieden werden	ja	
Gußoberflächenzustand, Rauheit		Merkblatt K 10 und Teil 2, Ricl – R _a -Tendenz	ntwerte	$R_{\rm a} < 3.2$	Bei Sandguß gewichtsab- hängig
Verwendung von Eingußteilen		ile möglichst v	gut möglich Värmebehandlu ermeiden, Elem chten)		Verschleißschutz an stark beanspruchten Stellen, Ein- gußteile verlangsamen den Gießprozeß

Tabelle 2. Physikalische Eigenschaften (Richtwerte, siehe Abschnitt 3)

Werkstoff- Kurzzeichen*)	Erstarrungs- intervall	Elastizi- tätsmodul	Wärmeaus- dehnungs- koeffizient 20 bis 200°C	Spezifische Wärme bei 20°C	Wärmeleit- fähigkeit bei 20°C	Elektrische- Leitfähigkeit bei 20°C
	°C	kN/mm²	10 ⁻⁶ /K	J/gK	W/cm K	m/Ω mm^2
G-AlSi12	580 bis 570	75	21	0,90	1,3 bis 1,9	17 bis 26
G-AlSi12(Cu)	580 bis 530	75	21	0,89	1,2 bis 1,6	15 bis 22
3-AlSi10Mg	600 bis 550	74	22	0,91	1,3 bis 1,9	17 bis 26
G-AlSi10Mg(Cu)	600 bis 530	74	22	0,90	1,2 bis 1,6	16 bis 22
G-AlSi9Cu3	600 bis 490	75	21	0,88	1,1 bis 1,3	14 bis 18
G-AlSi6Cu4	620 bis 490	74	22	0,88	1,1 bis 1,3	15 bis 18
G-AlSi11	590 bis 570	75	21	0,91	1,3 bis 1,9	18 bis 27
G-AlSi9Mg	600 bis 550	74	22	0,91	1,4 bis 1,7	20 bis 23
G-AlSi7Mg	610 bis 550	73	22	0,92	1,6 bis 1,7	22 bis 24
G-AlCu4Ti	640 bis 540	72	24	0,90	1,1 bis 1,4	16 bis 20
G-AlCu4TiMg	640 bis 540	72	24	0,91	1,1 bis 1,4	16 bis 20
G-AlMg3	650 bis 600	70	24	0,94	1,1 bis 1,5	16 bis 22
G-AlMg3Si	640 bis 590	70	24	0,93	1,1 bis 1,4	15 bis 21
G-AlMg5	640 bis 560	69	25	0,94	1,1 bis 1,3	15 bis 20
G-AlMg5Si	630 bis 550	69	24	0,93	1,1 bis 1,3	15 bis 19
G-AlSi5Mg	620 bis 550	73	23	0,92	1,5 bis 1,9	21 bis 29
GD-AlSi9Cu3	600 bis 490	75	21	0,88	1,1 bis 1,3	14 bis 17
GD-AlSi12(Cu)	580 bis 530	76	21	0,89	1,2 bis 1,4	15 bis 18
GD-AlSi12	580 bis 570	75	21	0,90	1,2 bis 1,5	16 bis 20
GD-AlSi10Mg	600 bis 550	74	22	0,91	1,2 bis 1,5	16 bis 20
GD-AlMg9	620 bis 530	68	25	0,94	0,8 bis 1,0	12 bis 15

^{*)} Der Kennbuchstabe "G-" steht stellvertretend für "Sand-, Kokillen- und Feinguß" (G-/GK-/GF). Die Richtwerte erfassen alle Werkstoffzustände, die in DIN 1725 Teil 2 angegeben sind.

 $\{0\} \{\},$

}}}}}

Tabelle 3. Biegewechselfestigkeit $\sigma_{\rm bW}$ ermittelt an getrennt gegossenen, bearbeitetenden Probestäben, siehe Abschnitt 4.2

Sandguß	$\sigma_{ m bW}$ in N/mm 2	Kokillenguß	$\sigma_{ m bW}$ in N/mm 2
G-AlSi12 G-AlSi12 g G-AlSi12(Cu) G-AlSi10Mg G-AlSi10Mg wa G-AlSi10Mg(Cu) G-AlSi10Mg(Cu) wa G-AlSi9Cu3 G-AlSi6Cu4	50 bis 70 70 bis 100 50 bis 70 50 bis 70 70 bis 100 50 bis 70 70 bis 100 50 bis 70 50 bis 70	GK-ALSi12 GK-ALSi12 g GK-ALSi12(Cu) GK-ALSi10Mg GK-ALSi10Mg wa GK-ALSi10Mg(Cu) GK-ALSi10Mg(Cu) wa GK-ALSi9Cu3 GK-ALSi6Cu4	70 bis 90 80 bis 110 70 bis 90 70 bis 90 80 bis 110 70 bis 90 80 bis 110 60 bis 80
G-AlSi11 G-AlSi11 g G-AlSi9Mg wa G-AlSi7Mg wa G-AlCu4Ti ta G-AlCu4Ti wa G-AlCu4TiMg ka	50 bis 70 70 bis 100 70 bis 100 70 bis 100 80 bis 100 80 bis 100 80 bis 100	GK-AlSi11 GK-AlSi11 g GK-AlSi9Mg wa GK-AlSi7Mg wa GK-AlCu4Ti ta GK-AlCu4Ti wa GK-AlCu4TiMg ka	70 bis 90 80 bis 110 80 bis 110 80 bis 110 90 bis 110 90 bis 110 90 bis 110
G-AlMg3 G-AlMg3Si G-AlMg3Si wa G-AlMg5 G-AlMg5Si G-AlSi5Mg	60 bis 80 60 bis 80 70 bis 90 60 bis 80 60 bis 80 60 bis 80	GK-AlMg3 GK-AlMg3Si GK-AlMg3Si wa GK-AlMg5 GK-AlMg5Si GK-AlSi5Mg GK-AlSi5Mg wa	60 bis 80 60 bis 80 70 bis 90 60 bis 80 60 bis 80 60 bis 80 70 bis 90
Druckguß	$\sigma_{ m bW}$ in N/mm 2		
GD-AlSi9Cu3 GD-AlSi12(Cu) GD-AlSi12 GD-AlSi10Mg GD-AlMg9	70 bis 100 60 bis 90 60 bis 90 60 bis 90 60 bis 80		

Tabelle 4. Temperaturen und Zeiten für Wärmebehandlung

	Lösungs- glühtemperatur °C	Lösungs- glühdauer h²)	Abschreck- Wasser- temperatur °C	Auslagerungs- temperatur °C	Auslagerungs- dauer h
G-AlSi12 q	520 bis 530	3 bis 6	20 bis 50		
G-AlSi10Mg wa	520 bis 530	3 bis 6	20 bis 50 20 bis 50	160 bis 170	6 bis 8
G-AlSi10Mg(Cu) wa	510 bis 525	3 bis 6	20 bis 50 20 bis 50	160 bis 170	6 bis 8
G-AlSi11 g	520 bis 530	3 bis 6	20 bis 50	_	_
G-AlSi9Mg wa	525 bis 535	4 bis 8	20 bis 50	160 bis 170	6 bis 8
G-AlSi7Mg wa	525 bis 535	3 bis 8	20 bis 50	155 bis 165	6 bis 8
G-AlSi5Mg wa	525 bis 535	3 bis 6	20 bis 50	155 bis 165	6 bis 8
G-AlCu4Ti ta	525 bis 5351)	4 bis 81)	50 bis 80	140 bis 150	6 bis 8
G-AlCu4Ti wa	525 bis 5351)	4 bis 81)	50 bis 80	160 bis 170	6 bis 8
G-AlCu4TiMg ka	520 bis 5301)	4 bis 81)	50 bis 80	20	120
G-AlMg3Si wa	545 bis 555	4 bis 8	20 bis 50	160 bis 170	8 bis 10

¹⁾ Bei dickwandigen Sandgußteilen Lösungsglühtemperatur 510 bis 520 °C, Lösungsglühdauer 8 bis 24 h.

²⁾ Reine Haltedauer ohne Anwärmzeit. Für Kokillenguß kürzere, für Sandguß längere Zeiten

Tabelle 5. Nicht genormte Sonderlegierungen

Legierung Kurzzeichen	Legierungstyp/Kurzbezeichnung	Eigenschaft/Anwendung
G-/GK-/GD-AlZn10Si8Mg	Selbstaushärtende Legierung	Gußstücke, die ohne Wärmebehandlung höhere Festigkeit haben müssen.
GK-AlSi12CuNiMg GK-AlSi18CuNiMg GK-AlSi21CuNiMg GK-AlSi25CuNiMg	{ Kolbenlegierungen }	Für auf Verschleiß beanspruchte, warmfeste Gußstücke, besonders Kolben und Zylinder.
G-/GK-/GD-AlSi17Cu4Mg	390, A 390	Legierung hoher Verschleißbeständigkeit, z.B. für Motorblöcke, Zylinder.
G-/GK-AlMg5Si(Cu, Mn)	Zylinderkopflegierungen	Legierungen mit guter Temperaturwechsel- und Warmfestigkeit
G-/GK-AlCu4Ni2Mg G-/GK-AlCu5Ni1,5	Y-Legierung 3.1754	Legierungen hoher und höchster Warm- festigkeit
G-/GK-AlSi0,5Mg G-/GK-AlSi2Mn G-/GK-AlSi4Mg	{ Leitfähigkeitslegierungen }	Legierungen mit hoher elektrischer Leitfähigkeit $>$ 26 m/ Ω · mm 2 für Leitzwecke
GK-/GD-Al99,5 GK-/GD-Al99,7	Rotorenaluminium	Reinaluminium hoher Leitfähigkeit, für Kurz- schlußläufer

Internationale Patentklassifikation

C 22 C 21/00 B 22 D 21/02 G 01 N 33/20 G 01 N 3/00 数线

Aluminiumlegierungen

Vorlegierungen

DIN 1725

Aluminium alloys, master alloys Alliages d'aluminium, alliages mère

1. Geltungsbereich

Diese Norm gilt für die Zusammensetzung von Vorlegierungen auf Aluminiumbasis zur Herstellung und Kornfeinung von Guß- und Knetlegierungen, vornehmlich von Aluminiumlegierungen.

2. Bezeichnung

Die Aluminium-Vorlegierungen nach dieser Norm werden durch die Kurzzeichen nach der Tabelle bezeichnet.

Bezeichnungsbeispiel

Bezeichnung einer Vorlegierung mit dem Kurzzeichen V-AlMn10 oder der Werkstoffnummer 3.0571:

Vorlegierung V-AlMn10 DIN 1725

oder Vorlegierung 3.0571 DIN 1725

Die Benennung und die DIN-Nummer können außerhalb des Bestellverkehrs zwischen Lieferer und Kunden weggelassen werden, wenn die Eindeutigkeit gewahrt ist. Es genügt dann das Kurzzeichen oder die Werkstoffnummer, z. B. V-AlMn10 oder 3.0571.

3. Zusammensetzung (siehe Tabelle)

Wird eine Nachprüfung oder ein Analysenattest gewünscht, so muß dies vereinbart werden (Bescheinigungen über Werkstoffprüfungen nach DIN 50 049).

4. Lieferart

Masseln, Kerbblöcke, Kerbplatten, Scher- und Bruchstücke.

Bestellbeispiel

100 kg Kerbplatten aus der Vorlegierung mit dem Kurzzeichen V-AlMn10 oder der Werkstoffnummer 3.0571:

100 kg Kerbplatten V-AlMn10 DIN 1725

oder 100 kg Kerbplatten 3.0571 DIN 1725

5. Prüfung der Zusammensetzung

Die Legierungsbestandteile werden nach den Analysenvorschriften des Herstellerwerkes bestimmt. Die übrigen zulässigen Beimengungen nur bei einer Beanstandung. Schiedsanalyse bzw. Probenahme sind nach der neuesten Ausgabe der "Analyse der Metalle" des Chemikerausschusses der Gesellschaft Deutscher Metallhütten- und Bergleute e. V., Band 1: "Schiedsanalysen" bzw. Band 3: "Probenahme", auszuführen (Berlin — Göttingen — Heidelberg: Springer-Verlag).

Auf jeden gefundenen Einzelwert ist die Rundungsregel nach DIN 1333 anzuwenden. Die gerundete Zahl darf die für die Zusammensetzung festgelegten Grenzwerte nicht überschreiten.

Fortsetzung Seite 2 und 3

Fachnormenausschuß Nichteisenmetalle im Deutschen Normenausschuß (DNA)
Fachnormenausschuß Gießereiwesen im DNA

UM!

	Werkstoff-	Chemische Zu	sammensetzung in Gew%	Hinweise
Kurzzeichen	nummer	Legierungs- bestandteile	Zulässige Beimengungen	für die Verwendung
V-AIB3	3.0821	B 2,5 bis 3,4 Al Rest	Cr 0,02 Ti 0,02 Cu 0,02 V 0,02 Fe 0,30 Zn 0,03 Mg 0,02 Zr 0,02	Kornfeinung Herstellen von Alu- minium für die
V-AIB4	3.0831	B 3,5 bis 4,5 Al Rest	Mn 0,02 Sonstige Ni 0,02 einzeln 0,05 Si 0,20 zusammen 0,10	Elektrotechnik (Leitaluminium)
V-AlBe5	3.0841	Be 4,5 bis 6,0 Al Rest	Cr 0,03 Ti 0,02 Cu 0,05 Zn 0,10 Fe 0,40 Sonstige Mg 0,05 einzeln 0,05 Mn 0,03 zusammen 0,2 Si 0,20	Desoxidation Oxidationsschutz
V-AlCr5	3.0551	Cr 4,0 bis 6,0 Al Rest	Cu 0,15 Sn 0,10 Fe 0,45 Ti 0,10 Mg 0,50 Zn 0,15 Mn 0,35 Sonstige Ni 0,10 einzeln 0,05 Pb 0,10 zusammen 0,15 Si 0,40	Einlegieren von Cr
V-AlCu50	3.1191	Cu 48,0 bis 52,0 Al Rest	Cr 0,10 Sn 0,10 Fe 0,45 Ti 0,10 Mg 0,30 Zn 0,30 Mn 0,35 Sonstige Ni 0,20 einzeln 0,05 Pb 0,20 zusammen 0,15	Einlegieren von Cu
V-AlFe5	3.0941	Fe 4,0 bis 6,0 Al Rest	Cr 0,10 Sn 0,10 Cu 0,15 Ti 0,1 Mg 0,40 Zn 0,2 Mn 0,35 Sonstige Ni 0,10 einzeln 0,05 Pb 0,15 zusammen 0,15 Si 0,40	Einlegieren von Fe
V-AlMn10	3.0571	Mn 9,0 bis 11,0 Al Rest	Cr 0,10 Sn 0,10 Cu 0,2 Ti 0,1 Fe 0,45 Zn 0,2 Mg 0,50 Sonstige Ni 0,20 einzeln 0,05 Pb 0,10 zusammen 0,15 Si 0,40	Einlegieren von Mn

· ·

	Werkstoff-	Chemische !	Zusammensetzung in Gew	v% Hinweise			
Kurzzeichen	nummer	Legierungs- bestandteile			ndung		
V-AlSi12	3.2581		Vorlegierung wird G-AlSi12 als Blockmetall Einl DIN 1725 Blatt 2 verwendet				ı Si
V-AlSi20	3.2291	Si 18,0 bis 21,0 Al Rest	Cr 0,10 Sn 0,10 Cu 0,20 Ti 0,1 Fe 0,45 Zn 0,2 Mg 0,40 Sonstige Mn 0,35 einzeln 0 Ni 0,20 zusamm Pb 0,10	0,05	n Si		
VR-AlSi20	3.2292	Si 18,0 bis 21,0 Al Rest	Cr 0,05 Ti 0,05 Cu 0,05 Zn 0,10 Fe 0,3 Sonstige Mg 0,05 einzeln 0 Mn 0,10 zusamm	bei Anforderur an höhere Rein 0,05	ngen		
V-AITi5	3.0851	Ti 4,5 bis 6,0 Al Rest	Cr 0,10 Si 0,50 Cu 0,15 Sn 0,10 Fe 0,45 V 0,25 Mg 0,50 Zn 0,15 Mn 0,35 Sonstige Ni 0,10 einzeln 0 Pb 0,10 zusamm	Kornfeinung 0,05	ı Ti		
V-AlTi10	3.0881	Ti 9,0 bis 11,0 Al Rest	Cr 0,02 Si 0,20 Cu 0,02 V 0,30 Fe 0,30 Sonstige Mg 0,02 einzeln Mn 0,02 zusamm	Kornfeinung e 0,05	ı Ti		
V-AlTi5B1	3.0861	Ti 5,0 bis 6,2 B 0,9 bis 1,4 *) Al Rest	Cr 0,02 V 0,20 Cu 0,02 Zn 0,03 Fe 0,30 Zr 0,02 Mg 0,02 Sonstige Mn 0,02 einzeln Ni 0,04 zusamm Si 0,20	B B)		
V-AIZr6	3.0862	Zr 5,0 bis 6,5 Al Rest	Cr 0,02 V 0,02 Cu 0,02 Zn 0,03 Fe 0,30 Ti 0,02 Mg 0,02 Sonstige Mn 0,02 einzeln Ni 0,04 zusamm	B 2 e			

^{*)} Zwischen der Kornfeinungswirkung und der Teilchengröße der Titanboride bestehen Zusammenhänge. Deshalb ist gegebenenfalls die Teilchengröße der Titanboride in der Vorlegierung zu beachten.

Die Dichte sollte 2,45 kg/dm³ nicht unterschreiten.

\$\$\$\$\$\$\$

DK 669.715.018.2:621.74

Aluminiumlegierungen Gußlegierungen Blockmetall (Masseln) Flüssigmet

Blockmetall (Masseln) Flüssigmetall Zusammensetzung

DIN 1725

Aluminium alloys, casting alloys; ingots; chemical composition Alliages d'aluminium, alliages de fond lingots; composition chimique Mit DIN 1725 T 2/02.86 Ersatz für DIN 1725 T 2/09.73

1 Anwendungsbereich

Diese Norm enthält Angaben über die Zusammensetzung von Aluminiumlegierungen in Form von Blockmetallen (Masseln) oder als Flüssigmetall zur Herstellung von Gußstücken nach DIN 1725 Teil 2.

2 Bezeichnung

2.1 Normbezeichnung

Blockmetalle nach dieser Norm sind mit den Werkstoff-Kurzzeichen und den Werkstoff-Nummern nach den Tabellen 1 bis 4 zu bezeichnen, z.B.:

Bezeichnung eines Blockmetalls mit dem Werkstoff-Kurzzeichen GB-AlSi10Mg, der Werkstoff-Nummer 3.2331 und der Legierungs-Nr 239 A:

Blockmetall DIN 1725 - GB-AlSi10Mg oder Blockmetall DIN 1725 - 3.2331 oder Blockmetall DIN 1725 - 239A

Die in Abschnitt 3 angeführten Kennbuchstaben für die Schmelzbehandlung, z.B. "kf" für Kornfeinung werden an die Werkstoffbezeichnung wie folgt angehängt:

Blockmetall DIN 1725 - GB-AlSi10Mg - kf oder Blockmetall DIN 1725 - 3.2331 - kf oder Blockmetall DIN 1725 - 239A - kf

2.2 Bestellbezeichnung

Für die Abwicklung einer Bestellung ist die Normbezeichnung um die bestellte Menge zu ergänzen:

4 t Blockmetall mit dem Werkstoff-Kurzzeichen GB-AlSi10Mg, der Werkstoff-Nummer 3.2331 und der Legierungs-Nr 239 A:

4 t Blockmetall DIN 1725 – GB-AlSi10Mg oder 4 t Blockmetall DIN 1725 – 3.2331 oder 4 t Blockmetall DIN 1725 – 239A

Gegebenenfalls ist zu vereinbaren, ob einzeln- oder stranggegossenes Blockmetall geliefert werden soll oder Flüssigmetall. Die Legierungskennzeichnung zur Vermeidung von Verwechslungen und die Verpackungsart sind gesondert zu vereinbaren.

3 Zusammensetzung

Siehe Tabellen 1 bis 4.

Werden Schmelzbehandlungen, z.B. zur Veredelung, zur Kornfeinung, bereits am Blockmetall/ Flüssigmetall vorgenommen, so sollten zu ihrer Bezeichnung die nachstehenden Kennbuchstaben verwendet werden:

- kf = korngefeint, z.B. mit Titan-Bor-Vorlegierung oder einem entsprechenden Salzpräparat
- Na = mit Natrium vorbehandelt zur späteren Vollveredelung mit Natrium (= Kurzzeitveredelung)
- Sr = mit Strontium veredelt (= Langzeitveredelung)
- P = mit Phosphor behandelt (= Silicium-Feinung)

4 Prüfung der Zusammensetzung

Die Legierungsbestandteile und die Beimengungen werden in der Regel nach den Analysenvorschriften des Herstellerwerkes bestimmt. Schiedsanalyse bzw. Probenahme sind nach der neuesten Ausgabe der "Analysen der Metalle" des Chemikerausschusses der Gesellschaft Deutscher Metallhütten- und Bergleute e. V., Band I "Schiedsanalyse" bzw. Band III "Probenahme" auszuführen.

Auf jeden gefundenen Einzelwert ist die Rundungsregel nach DIN 1333 Teil 2 anzuwenden. Die gerundete Zahl darf die für die Zusammensetzung festgelegten Grenzwerte nicht überschreiten.

Wird eine Analysenbescheinigung gewünscht, so ist dies zu vereinbaren.

Fortsetzung Seite 2 bis 6

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e. V Normenausschuß Gießereiwesen (GINA) im DIN 3533

.5.

5 Lieferart

Aluminium-Gußlegierungen nach dieser Norm werden in Form von Blöcken (Masseln, Einzelguß oder Strangguß) und im flüssigen Zustand geliefert. Die gängigen Blockgewichte bewegen sich im Bereich von etwa 4 bis 10 kg, Sonderformate bis etwa 500 kg.

1431

Tabelle 1. Legierungen für Sand- und Kokillenguß
Legierungen für allgemeine Verwendung

Werksto	off-		ensetzung nteile in%	Legierungs-Nr der
Kurzzeichen Nummer		Legierungsbestandteile	zul. Beimengungen ¹) _{max}	ngungen 1) Schmelzwerke
GB-AlSi12	3.2521	Si 10,5 bis 13,5 Mn 0,001 bis 0,4 Al Rest	Cu 0,03 Fe 0,3 Mg 0,05 Ti 0,15 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	230 A
GB-AlSi12(Cu)	3.2523	Si 10,5 bis 13,5 Mn 0,1 bis 0,5 Al Rest	Cu 1,0 Fe 0,80 Mg 0,3 Ni 0,2 Pb 0,2 Sn 0,1 Ti 0,15 Zn 0,5 Sonstige: einzeln 0,05 insgesamt 0,15	231 A
GB-AlSi10Mg	3.2331	Si 9,0 bis 11,0 Mg 0,20 bis 0,50 Mn 0,001 bis 0,4 Al Rest	Cu 0,03 Fe 0,3 Ti 0,15 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	239 A
GB-AlSi10Mg(Cu)	3.2332	Si 9,0 bis 11,0 Mg 0,20 bis 0,50 Mn 0,1 bis 0,4 Al Rest	Cu 0,3 Fe 0,60 Ni 0,1 Ti 0,15 Zn 0,3 Sonstige: einzeln 0,05 insgesamt 0,15	233
GB-AlSi9Cu3	3.2165	Si 8,0 bis 11,0 Cu 2,0 bis 3,5 Mn 0,1 bis 0,5 Mg 0,1 bis 0,5 Al Rest	Fe 0,80 Ni 0,3 Pb 0,2 Sn 0,1 Ti 0,15 Zn 1,2 Sonstige: einzeln 0,05 insgesamt 0,15	226 A
GB-AlSi6Cu4	3.2155	Si 5,0 bis 7,5 Cu 3,0 bis 5,0 Mn 0,1 bis 0,6 Mg 0,1 bis 0,5 Al Rest	Fe 1.0 Ni 0.3 Pb 0.3 Sn 0.1 Ti 0.15 Zn 2.0 Sonstige: einzeln 0.05 insgesamt 0.15	225

Tabelle 2. Legierungen für Sand-, Kokillen- und Feinguß
Legierungen mit besonderen mechanischen Eigenschaften

Werkstoff-		Zusammensetzung Massenanteile in %		Legierungs-Nr der
Kurzzeichen	Nummer	Legierungsbestandteile	zul. Beimengungen ¹) _{max.}	Schmelzwerke
GB-AlSi11	3.2212	Si 10,0 bis 11,8 Mg 0,001 bis 0,45 Al Rest	Cu 0,01 Fe 0,15 Mn 0,03 Ti 0,15 Zn 0,07 Sonstige: einzeln 0,03 insgesamt 0,10	-
GB-AlSi9Mg	3.2333	Si 9,0 bis 10,0 Mg 0,30 bis 0,45 Al Rest	Cu 0,03 Fe 0,15 Mn 0,10 Ti 0,15 Zn 0,07 Sonstige: einzeln 0,03 insgesamt 0,10	-
GB-AlSi7Mg	3.2335	Si 6,5 bis 7,5 Mg 0,30 bis 0,45 Ti 0,001 bis 0,20 Al Rest	Cu 0,03 Fe 0,15 Mn 0,10 Zn 0,07 Sonstige: einzeln 0,03 insgesamt 0,10	-
GB-AlCu4Ti	3.1842	Cu 4,5 bis 5,2 Ti 0,15 bis 0,30 Mn 0,001 bis 0,5 Al Rest	Fe 0,15 Si 0,15 Zn 0,07 Sonstige: einzeln 0,03 insgesamt 0,10	-
GB-AlCu4TiMg	3.1372	Cu 4,2 bis 4,9 Mg 0,15 bis 0,30 Ti 0,15 bis 0,30 Mn 0,001 bis 0,5 At Rest	Fe 0,15 Si 0,15 Zn 0,07 Sonstige: einzeln 0,03 insgesamt 0,10	-
1) Ausgenommen Ve	redelungs- und/ode	r Kornfeinungszusätze		

संस्थ

Tabelle 3. Legierungen für Sand-, Kokillen- und Feinguß Legierungen für besondere Verwendung

Werkstoff-		Zusammensetzung Massenanteile in %		Legierungs-Nr der
Kurzzeichen	Nummer	Legierungsbestandteile	zul. Beimengungen 1)	Schmelzwerke
GB-AlMg3	3.3542	Mg 2,7 bis 3,5 Mn 0,001 bis 0,4 Ti 0,001 bis 0,20 Al Rest Be nach Vereinbarung	Cu 0,03 Fe 0,4 Si 0,50 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	242
GB-AlMg3Si	3.3242	Mg 2,7 bis 3,5 Si 0,9 bis 1,3 Mn 0.001 bis 0,4 Ti 0,001 bis 0,20 Al Rest Be nach Vereinbarung	Cu 0,03 Fe 0,4 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	243
GB-AlMg5	3.3562	Mg 4,8 bis 5,5 Mn 0,001 bis 0,4 Ti 0,001 bis 0,20 Al Rest Be nach Vereinbarung	Cu 0,03 Fe 0,4 Si 0,50 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	244
GB-AlMg5Si	3.3262	Mg 4,8 bis 5,5 Si 0,9 bis 1,5 Mn 0,001 bis 0,4 Ti 0,001 bis 0,20 Al Rest Be nach Vereinbarung	Cu 0,03 Fe 0,4 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	245
GB-AlSi5Mg	3.2342	Si 5,0 bis 6,0 Mg 0,4 bis 0,8 Mn 0,001 bis 0,4 Ti 0,001 bis 0,20 Al Rest	Cu 0,03 Fe 0,3 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	235

BB

Tabelle 4. Legierungen für Druckguß

Werkstoff-		Zusammensetzung Massenanteile in %		Legierungs-Nr
Kurzzeichen	Nummer	Legierungsbestandteile	zul. Beimengungen 1)	der Schmelzwerke
GBD-AlSi9Cu3	3.2166	Si 8,0 bis 11,0 Cu 2,0 bis 3,5 Mn 0,1 bis 0,4 Mg 0,1 bis 0,5 Al Rest	Fe 1,0 ²) Ni 0,3 Pb 0,2 Sn 0,1 Ti 0,15 Zn 1,2 Sonstige: einzeln 0,05 insgesamt 0,15	226
GBD-AlSi12	3.2586	Si 10,5 bis 13,5 Mn 0,001 bis 0,4 Al Rest	Cu 0,08 Fe 0,8 Mg 0,05 Ti 0,15 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	230
GBD-AlSi12(Cu)	3.2985	Si 10,5 bis 13,5 Mn 0,1 bis 0,4 Al Rest	Cu 1,0 Fe 1,0 Mg 0,4 Ni 0,2 Pb 0,2 Sn 0,1 Ti 0,15 Zn 0,5 Sonstige: einzeln 0,05 insgesamt 0,15	231
GBD-AlSi10Mg	3.2336	Si 9,0 bis 11,0 Mn 0,001 bis 0,4 Mg 0,20 bis 0,50 Al Rest	Cu 0,08 Fe 0,8 Ti 0,15 Zn 0,10 Sonstige: einzeln 0,05 insgesamt 0,15	239
GBD-AlMg9	3.3293	Mg 7,5 bis 10,0 Si 0,01 bis 2,5 ³) Mn 0,2 bis 0,5 Al Rest	Cu 0,03 Fe 0,8 Ti 0,15 Zn 0,1 Sonstige: einzeln 0,05 insgesamt 0,15	349

¹⁾ Ausgenommen Veredelungs- und/oder Kornfeinungszusätze

²⁾ Bei besonderen Anforderungen kann der Eisengehalt auf max. 0,80% begrenzt werden (Legierung G-/GK-AlSi9Cu3 - 226 A).

³⁾ Mit steigendem Siliciumgehalt verbessert sich die Gießbarkeit; bei Polieren und anodischer Oxidation geht damit der silberhelle Farbton in einen graueren über. Höhere Siliciumgehalte vermindern die Korrosionsbeständigkeit.

Zitierte Normen und andere Unterlagen

DIN 1333 Teil 2 Zahlenangaben; Runden

DIN 1725 Teil 2 Aluminiumlegierungen, Gußlegierungen; Sandguß, Kokillenguß, Druckguß, Feinguß

Analyse der Metalle 1)

Band I Schiedsanalysen Band III Probenahme

Ergänzungsband zu den Bänden I Schiedsanalysen * II Betriebsanalysen

Weitere Unterlagen

Beiblatt 1 zu

DIN 1725 Teil 2 Aluminiumlegierungen, Gußlegierungen, Sandguß, Kokillenguß, Druckguß, Feinguß, Anhaltsangaben über

mechanische und physikalische Eigenschaften sowie gießtechnische Hinweise

Beiblatt 1 zu

DIN 1725 Teil 5 Aluminiumlegierungen, Gußlegierungen; Blockmetall (Masseln), Flüssigmetall; Zusammensetzung; Hinweise

388

zur Legierungsverarbeitung

Frühere Ausgaben

DIN 1713 Teil 2: 12.41; DIN 1744: 09.36, 03.40;

DIN 1725: 11.42;

DIN 1725 Teil 2: 07.43, 01.45, 06.51, 06.59x, 09.70, 05.73, 09.73

Änderungen

Gegenüber DIN 1725 Teil 2, Ausgabe September 1973, wurden folgende Änderungen vorgenommen:

- a) Die Angaben über die Zusammensetzung der Blockmetalle wurden aus Teil 2 in Teil 5 übernommen.
- b) Hinweise zur Legierungsverarbeitung werden im Beiblatt 1 zu DIN 1725 Teil 5 gegeben.

Internationale Patentklassifikation

C 22 C 21/00 B 22 D 21/02

1) Zu beziehen durch:

Berlin - Heidelberg - New York; Springer-Verlag

888

Aluminiumlegierungen Gußlegierungen

Blockmetall (Masseln) Flüssigmetall, Zusammensetzung Hinweise zur Legierungsverarbeitung

Beiblatt 1 zu **DIN 1725** Teil 5

Aluminium alloys, casting alloys; ingots; chemical composition; information about alloying operations Alliages d'aluminium, alliages de fondrie; lingots; composition chimique; information sur les opérations de fusion d'alliage

> Dieses Beiblatt enthält Informationen zu DIN 1725 Teil 5. jedoch keine zusätzlich genormten Festlegungen

1. Die schmelztechnische Verarbeitung (Schmelzen, Behandeln, Warmhalten) von Aluminium-Gußlegierungen mit dem Ziel, Gußteile definierter Eigenschaften herzustellen, verlangt die Beachtung des chemisch/physikalischen Verhaltens dieser Werkstoffe im schmelzflüssigen Zustand:

Die hohe Neigung des Aluminiums zur Oxidation (= Verbindung mit Sauerstoff) und zur Gasaufnahme (= Aufnahme von Wasserstoff) muß bei der Führung der Schmelze berücksichtigt werden. Zum Erzielen einer gleichmäßig hohen Gußgualität sind deshalb in bestimmten Zeitabständen Reinigungsmaßnahmen vorzusehen, um den gelösten Wasserstoff sowie Oxide und sonstige Feststoffverunreinigungen aus der Schmelze zu entfernen. Dazu steht eine Vielzahl von Verfahren und Schmelzhilfsmitteln (Salze, Gase, Gasgemische) zur Verfügung (siehe u. a. VDG-Merkblatt R 50 Schmelzebehandlungen für NE-Metalle und -Legierungen, Entwurf).

Beim Schmelzen, Warmhalten und Behandeln von Aluminium-Gußlegierungen ist zu berücksichtigen, daß sich die Gehalte leicht oxidierbarer oder verdampfbarer Elemente (z.B. Magnesium, Natrium, Strontium) verfahrensbedingt erniedrigen können. Bei überhöhten Gehalten an Beimengungen (auch durch Aufnahme beim Schmelzprozeß - z. B. Fe -) können sich insbesondere bei niedrigen Schmelz-(Warmhalte-)Temperaturen hochschmelzende, intermetallische Verbindungen vom Typ AlSi (FeMn), AlSi (FeMnCr) bilden. Diese sogenannten "harten Einschlüsse" sind in der Schmelze praktisch nicht wieder löslich.

Mit steigenden Temperaturen nehmen Oxidation und Gasaufnahme zu; die Kornfeinungswirksamkeit kann nachlassen. Elemente wie Mg, Na, Sr, Li, Ca machen die Oxidhaut durchlässiger für die Wasserstoffaufnahme.

2. Schmelzbehandlungen mit gefügebeeinflussender Wirkung sind in Abhängigkeit von der Legierungszusammensetzung und dem gewünschten Behandlungseffekt bei bestimmten Temperaturen durchzuführen. Eine mögliche Wechselwirkung der verschiedenen Behandlungsmittel ist zu berücksichtigen.

Bei den Schmelzbehandlungen unterscheidet man:

Kornfeinung

= Feinung des Grundgefüges (Al-Mischkristall) z.B. mit Titan-Bor-haltigen Salzpräparaten oder Vorlegierungen (zulässigen Gesamt-Titangehalt beachten)

Veredeluna

= Feinung des Eutektikums bei AlSi-Gußlegierungen z.B. mit Natrium, Strontium

Phosphorbehandlung = Umwandlung des "lamellaren" Siliciums in eine "körnige" Form (Feinung des Primär-Si bei übereutektischen AlSi-Legierungen)

Kornfeinung und/oder Veredelung können zur Verbesserung des Speisungsverhaltens einer Legierung und zur Verbesserung der mechanischen Eigenschaften der Gußteile beitragen. Es ist zu beachten, daß veredelte Schmelzen (z.B. mit Natrium oder Strontium) nicht mit Chlor- oder Chlor-abgebenden Schmelzehilfsmitteln behandelt werden dürfen, wenn die "Veredelung" erhalten bleiben soll. In solchen Fällen sollte – falls erforderlich – der Wasserstoff durch eine Vakuumbehandlung oder durch neutrale Spülgase, z.B. Stickstoff, Argon, entfernt werden.

Erhöhte Phosphorgehalte in AlSi-Legierungen können die Veredelung erschweren (siehe Bild 1 nach P. Nölting *)).

Fortsetzung Seite 2

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e. V Normenausschuß Gießereiwesen (GINA) im DIN

^{*)} P. Nölting, Gießerei 58 (1971), Nr 17, S. 509 - 512

Bild 1. Schematische Darstellung des eutektischen Aluminium-Silicium-Gefüges in Abhängigkeit vom Phosphor- und Natriumgehalt. Die Erstarrungsgeschwindigkeit hat einen großen Einfluß auf die Gefügeausbildung (Verschiebung der Kurvenzüge).

2

3. Die genannten Schmelzebehandlungsmaßnahmen können in einigen Fällen bereits vom Legierungshersteller durchgeführt werden; in anderen Fällen werden diese besser in der Gießerei vorgenommen. Für das Druckgießverfahren werden diese Behandlungsverfahren im allgemeinen nicht durchgeführt.

Zu berücksichtigen ist dabei jedoch die nur bedingte Umschmelz- und Langzeitbeständigkeit bestimmter Behandlungen (z. B. Na-Veredelung) des Block- oder Flüssigmetalls. Mit gefügebeeinflussenden Präparaten beim Hersteller vorbehandelte Legierungen werden häufig mit nicht eindeutigen Kennzeichnungen belegt, z. B.:

dauerveredelt = Langzeitveredelung mittels Strontium

an-, vorveredelt = kurzzeitig anhaltende Vorveredelung mit Natrium als Vorbehandlung zur Erleichterung der Vollveredelung in der Gießerei

Um Mißverständnisse auszuschließen, wurden jetzt Kennbuchstaben für die verschiedenen Vorbehandlungen festgelegt, z.B. "kf" für "korngefeint", die der Werkstoff-Bezeichnung angehängt werden.

- 4. Bei warmaushärtbaren Legierungen sind die für den Wärmebehandlungseffekt wichtigen Elemente, insbesondere Magnesium, in der gießfertigen Schmelze in bestimmten, gegenüber der Norm unter Umständen engeren Grenzen zu halten, um gleichmäßige mechanische Eigenschaften zu erreichen (z.B. 0,28 bis 0,35 % Mg).
- 5. Die Gleichmäßigkeit des Gießverhaltens einer Legierung wird außer von den Gehalten an Legierungselementen und zulässigen Beimengungen u. a. auch von Elementespuren beeinflußt, über deren Wirkung zur Zeit noch keine eindeutige Klarheit vorliegt.

Internationale Patentklassifikation

C 22 C 21/00 B 22 D 21/02